博碩士論文 100683002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:92 、訪客IP:3.21.105.21
姓名 張富淵(CHANG FU-YUAN)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 利用福衛三號電子濃度掩星觀測電離層中性風效應
(A Study on Ionospheric Neutral Wind Signatures by Using FORMOSAT-3/COSMIC)
相關論文
★ 台灣地區1996年散塊E層之變化★ 2000年4月6日磁暴研究
★ 利用GPS觀測與IRI 模擬研究1997及2000年台灣經度赤道異常峰之變化★ 台灣地區1996及2000年電離層散狀F層與全球定位系統相位擾亂之比較
★ 電離層地震前兆之研究★ 電離層波動垂直能量傳播之研究
★ 南美洲磁赤道地區散狀F層於太陽活動極大期之研究★ 台灣地區中界層於第22-23太陽週期間之特性研究
★ 利用全球定位系統觀測電離層地震前兆★ 臺灣地區電離層季節異常與太陽活動之相關性研究
★ 台灣地區地震與閃電之研究★ 台灣地區地震前之電離層電子濃度異常
★ 磁暴時低緯度電離層變化★ 電離層赤道異常與赤道電噴流
★ 日出前及日落後電離層高度變化之研究★ 電離層探測儀與全球定位系統聯合觀測電離層F層電漿密度不規則體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地球高層大氣之電離層和熱氣層,在不同物理和化學機制相互作用影響下,使得其中之電子濃度隨著經緯度、高度、時間、季節、太陽活動,而呈現相當複雜的變化。這些變化肇因於太陽輻射改變、電離層與熱氣層耦合作用。本論文研究電離層電漿與熱氣層中性風之關聯,其中包括有:(1)南半球中高緯度之威德海異常(Weddell Sea Anomaly, WSA)與北半球中緯度之西伯利亞和雅庫茨克異常(Siberia-Yakutsk Anomaly, SYA),此二者特徵為夏季夜間電離層電子濃度比其白天的大。(2)低緯度電漿匱乏灣(Plasma Depletion Bays, PDB),其為五月前後期間赤道電離層於北大西洋、印度洋、東南亞三個區域,出現夏半球夜間大氣輝光與電子濃度北匱乏灣之現象。本研究利用「福爾摩沙衛星三號」(福衛三號)觀測電離層三維結構,詳細探討威德海異常與西伯利亞/雅庫茨克異常以及電漿匱乏灣日、季、緯度、高度之變化。福衛三號於2006年4月15日發射運行,由六顆近地衛星所組成,每顆衛星裝載「全球定位系統氣象量測儀」進行掩星觀測(GOX),每天能提供全球平均2000筆電離層90至800公里高之電子濃度。
觀測結果顯示,威德海與西伯利亞/雅庫茨克異常發生的盛行高度約為距地300公里高。2007至2016年全球固定地方時研究結果顯示,南半球夏季子夜時段,高緯度之威德海異常仍具有最大之電子濃度,然而隨著地方時,此一異常峰會沿同一緯度,向東飄移之日變化週期現象;北半球西伯利亞/雅庫茨克異常所發生的中緯度,則同時出現兩個異常峰隨著地方時間有向東飄移之半日變化週期現象。水平風場模式Horizontal Wind Model 1993 (HWM93)模擬比對福衛三號觀測顯示,水平風引發沿著磁力線之磁子午風與威德海和西伯利亞/雅庫茨克異常位置吻合並同步飄移。結果顯示,磁子午風之子午赤道向分量與鉛垂向上分量是形成單一峰與雙峰的重要機制,同時證實這些異常現象全年全天候皆會出現。
福衛三號電子濃度觀測顯示,2007至2014年電漿匱乏灣盛行於赤道和低緯度電離層之275公里高。4月至9月間,北半球匱乏灣出現在30°–60°W (大西洋)、30°–110°E (印度洋)與120°–160°E (東南亞)三個緯度區域;10月至3月間南半球匱乏灣則會位於80°–150°W(南美洲西岸),事實上四個匱乏灣於全年全天候皆會出現,且盛行高度會隨著地方時而改變。HWM93水平風場模擬,說明東西向之經向風造成沿磁力線之赤道向電漿飄移,是形成電漿匱乏灣的主要機制。整體而言,福衛三號觀察和HWM93水平風場模擬證實,中性風引發的磁子午向等效電漿飄移為造成威德海、西伯利亞/雅庫茨克異常、以及電漿匱乏灣的物理機制,而這些異常現象24小時全天候出現於一年四季。
摘要(英)
The Earth’s upper atmosphere, comprised of the thermosphere and ionosphere, is where neutral and charged particles interact causing complicated physical processes. The ionospheric electron density is highly variable with the altitude, latitude, longitude, local time, season, solar cycle. This dissertation shows the investigation of the nighttime features from the coupling between the ionosphere and thermospheric neutral wind. Two interesting phenomena associated with the electrodynamic processes are examined, which include (1) The Weddell Sea Anomaly (WSA) in southern mid to high-latitude and Siberia-Yakutsk Anomaly (SYA) in northern mid-latitude. The increasing anomalies of electron density are most prominent over the Weddell Sea region in the southern hemisphere and Siberia and Yakutsk areas in the northern hemisphere during local summer nighttime; and (2) The Plasma Depletion Bays (PDBs) at equatorial/low-latitude. These features of the electron density and TIMED/GUVI 135.6nm airglow emission are observed at the evening/night hours near magnetic equator in three longitude regions, North Atlantic, India Ocean, and Southeast Asia during May. Six microsatellites of the joint Taiwan-US satellite constellation mission, termed FORMOSAT-3/COSMIC (F3/C), were successfully launched in to a circle low Earth orbit at 01:40 UTC on 15 April 2006. Each satellite houses a GPS occultation experiment payload globally deriving the vertical electron density profile in the ionosphere. This constellation daily provides instantly more than 2000 profiles from 90 to 800 km altitude. Dense global electron density probing brings a new era of studying the space weather in the ionosphere.
In this dissertation work, the three-dimensional (3-D) plasma density structure constructed by electron density profiles from F3/C satellites are employed to study the diurnal, seasonal, latitudinal, and altitudinal variations of these anomalies and bay features. The results show that the WSA and SYA features occur prominently at about 300 km altitude, as well as yield the eastward shift of a single-peak plasma density along the WSA latitudes and a double-peak along the SYA latitudes during the period of 2007-2016. The thermospheric meridional and zonal winds simulated by Horizontal Wind Model 1993 (HWM93) is applied to interpret the plasma motions along the magnetic field lines associated with the WSA and SYA anomaly features. Results indicate that the meridional and vertical components of magnetic meridional wind can be responsible for the eastward shift of WSA single-peak and SYA double-peak plasma density. In fact, the WSA and SYA features constantly appear in whole day and all year round.
The PDB structures in the F3/C electron density prominently appear at 275 km altitude in the equatorial/low ionosphere. Three PDBs curving in the northern hemisphere around the magnetic equator situate in regions 30°–60°W (North Atlantic), 30°–110°E (India Ocean), and 120°–160°E (Southeast Asia) from April-September, while one PDB curving in the southern hemisphere appears in 80°–150°W (Southwest America) from October-March. A detailed study on the F3/C 3-D electron density structure shows that the four PDBs are intense mainly below the ionospheric peak density layer (~350 km altitude) in whole day and all seasons. A simulation of HWM93 suggests that the trans-equatorial plasma transports induced by the zonal wind result in the PDB features in the nighttime equatorial/low-latitude ionosphere. Blowing of the thermospheric neutral winds play an important role in the formation of the two anomalies and bay features.
關鍵字(中) ★ 威德海異常
★ 雅庫茨克異常
★ 電漿匱乏灣
關鍵字(英) ★ Weddell Sea Anomaly
★ Yakutsk Anomaly
★ Plasma Depletion Bays
論文目次
摘 要 i
Abstract iii
Acknowledgement vi
Content vii
List of Figure ix
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 The Thermosphere 3
1.3 The Ionosphere 4
1.4 Mid- and High-latitude Ionospheric Anomaly 7
1.5 Low-latitude Plasma Depletion 13
Chapter 2. FORMOSAT-3/COSMIC and Horizontal Wind Model 18
2.1 FORMOSAT-3/COSMIC Observation 18
2.2 Thermospheric Neutral Wind Simulation 26
Chapter 3. Weddell Sea and Siberia-Yakutsk Anomaly 33
3.1 Diurnal Variations of Electron Density along the Weddell Sea and Siberia-Yakutsk Latitudes 33
3.2 Eastward Shift and Neutral Wind 38
3.3 E×B and Tidal Effect 53
Chapter 4. Plasma Depletion Bay 61
4.1 Plasma Depletion Bay in Airglow and F2-Peak Electron Density 61
4.2 Diurnal, Seasonal, and Solar Activity Variations of Plasma Depletion Bay 65
4.3 Trans-equatorial Wind on Plasma Depletion Bay 76
Chapter 5. Discussion and Conclusion 89
References 92
Appendix A 104
Appendix B 107
Appendix C 118
參考文獻
Anderson, D. N. (1973), A theoretical study of the ionospheric F-region equatorial anomaly. I: Theory, Planet. Space Sci., 21, 409–419.

Anderson, D. and T. Fuller-Rowell (1999), The ionosphere, Space Environment Topics, NOAA: http://www.sel.noaa.gov/info/Iono.pdf.

Anthes, R. A., P. A., Bernhardt, Y., Chen, K., Cucurull, K. F., Dymond, S., Ector, S. B., Healy, S.-P., Ho, D. C., Hunt, Y.-H., Kuo, H., Liu, K., Manning, C., McCormick, T. K., Meehan, W. J., Randel, C., Rocken, W. S., Schreiner, S. V., Sokolovskiy, S., Syndergaard, D. C., Thompson, K. E., Trenberth, T.-K., Wee, N. L., Yen, and Z. Zhang (2008), THE COSMIC/FORMOSAT-3 MISSION: Early Results, Bull. Am. Met. Soc., 89, 3, 313–333, doi:10.1175/BAMS-89-3-313.

Appleton, E. V. (1946), Two anomalies in the ionosphere, Nature, 157, 691.

Balan, N., and G. J. Bailey (1995), Equatorial plasma fountain and its effects: Possibility of an additional layer, J. Geophys. Res., 100(A11), 21,421–21,432.

Bellchambers W. H., W. R. Piggott (1958), Ionospheric measurements made at Halley Bay, Nature, 188, 1596-1597.

Burns A. G., Zeng Z., W., Wang, J., Lei, S. C., Solomon, A. D., Richmond, T. L., Killeen, Y. H., Kuo (2008), Behavior of the F2-peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data, J. Geophys. Res., 113, A12305, doi:10.1029/2008JA013308.

Burns A. G., S. C., Solomon, W., Wang, A. D., Richmond, G., Jee, C. H., Lin, C., Rocken, Y. H., Kuo (2011), The summer evening anomaly and conjugate effects, J. Geophys. Res., 116, A01311, doi:10.1029/2010JA015648.

Chao X, and H. Luhr (2014), The Mid-latitude Summer Night Anomaly as observed by CHAMP and GRACE: Interpreted as tidal features, J. Geophys. Res., doi: 10.1002/2014JA019959.

Chang F. Y., J. Y., Liu, L. C., Chang, C. H., Lin, C. H., Chen (2015a), Three-dimensional electron density along the WSA and MSNA latitudes probed by FORMOSAT-3/COSMIC, Earth, Planets and Space. DOI 10.1186/s40623-015-0326-8.

Chang L. C., H., Liu, Y., Miyoshi, C. H., Chen, F. Y., Chang, C. H., Lin, J. Y., Liu, Y. Y., Sun (2015b), Structure and origins of the Weddell Sea Anomaly from tidal and planetary wave signatures in FORMOSAT-3/COSMIC observations and GAIA GCM simulations, J. Geophys. Res. 120(2): 1325–1340, doi: 10.1002/2014JA020752.

Chapman, S. (1931), The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth, Proc. Phys. Soc., 43, 26–45.

Chen C. H., J. D., Huba, A., Saito, C. H., Lin, J. Y., Liu (2011), Theoretical study of the ionospheric Weddell Sea Anomaly using SAMI2, J. Geophys. Res., 116, A04305, doi:10.1029/2010JA015573.

Chen C. H., A., Saito, C. H., Lin, J. Y., Liu (2012), Long-term variations of the nighttime electron density enhancement during the ionospheric midlatitude summer, J. Geophys. Res., 117, A07313, doi:10.1029/2011JA017138.

Cheng, C. Z., Y. H. Kuo, R. A. Anthes, L. Wu (2006), Satellite constellation monitors global and space weather, Eos, Trans. Amer. Geophys. Union, 87, 166–167.

Chen C. H., C. H., Lin, L. C., Chang, J. D., Huba, J. T., Lin, A., Saito, J. Y., Liu (2013), Thermospheric tidal effects on the ionospheric midlatitude summer nighttime anomaly using SAMI3 and TIEGCM, J. Geophys. Res. Space Physics, 118, 3836–3845, doi:10.1002/jgra.50340.

Cherniak I., I. Zakharenkova, A. Krankowski (2014), Approaches for modeling ionosphere irregularities based on the TEC rate index, Earth, Planets and Space, 66: 165, doi:10.1186/s40623-014-0165-z.

Davies, K. (1989), Ionospheric Radio. Peter Peregrinus Ltd., London, United Kingdom.

Dendy, R. O. (1993), Plasma physics, An introductory Course. The press syndicate of the university of Cambridge.

de Larquier S., J. M., Ruohoniemi, J. B. H., Baker, N., Ravindran Varrier, M., Lester (2011), First observations of the midlatitude evening anomaly using Super Dual Auroral Radar Network (SuperDARN) radars, J. Geophys. Res., 116, A10321, doi:10.1029/2011JA016787.

Drob, D. P. J. T. Emmert, G. Crowley, J. M. Picone, G. G. Shepherd, W. Skinner, P. Hays, R. J. Niciejewski, M. Larsen, C. Y. She, J. W. Meriwether, G. Hernandez, M. J. Jarvis, D. P. Sipler, C. A. Tepley, M. S. O’Brien, J. R. Bowman, Q. Wu, Y. Murayama, S. Kawamura, I. M. Reid, and R. A. Vincent (2008), An empirical model of the Earth’s horizontal wind fields: HWM07, J. Geophys. Res. 113, A12304.

Dudeney J. R., and W. R., Piggot (1978), Antarctic ionospheric research, in Upper Atmosphere Research in Antarctica. Ant. Res. Ser., edited by L. J. Lanzerotti and C. G. Park, pp 200-235, Washington, D. C..

England, S. L., T. J. Immel, E. Sagawa, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, L. J. Paxton (2006), Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly, J. Geophys. Res., 111, A10S19, doi:10.1029/2006JA011795.

Forbes J. M., D., Wu (2006), Solar Tides as Revealed by Measurements of Mesosphere Temperature by the MLS Experiment on UARS, J. Atmos. Sci., 63, 1776 – 1797.

Hanson, W. B., and R. J. Moffett (1966), Ionization transport effects in the equatorial F-region, J. Geophys. Res., 71(23), 5559–5572, doi:10.1029/JZ071i023p05559.

Hajj, G. A., E. R. Kursinski, L. J. Romans, W. I. Bertiger, S. S. Leroy (2002), A technical description of atmospheric sounding by GPS occultation, J. Atmos. Solar Terr. Phys., 64, 451–469.



Hajj, G. A., C. O., Ao, B. A., Iijima, D., Kuang, E. R., Kursinski, A. J., Mannucci, T. K., Meehan, L. J., Romans, M., de la Torre Juarez, T. P. Yunck (2004), CHAMP and SACC atmospheric occultation results and intercomparisons, J. Geophys. Res., 109, doi:10.1029/2003JD003909.

Hays, P. B., T. L. Killeen, B. C. Kennedy (1981), The Fabry-Perot interferometer on Dynamics Explorer, Space Sci. Instrum., 5, 395–416.

Hedin, A. E., N. W., Spencer, T. L., Killeen (1988), Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data, J. Geophys. Res. 93, 9959–9978.

Hedin, A. E., E. L., Fleming, A. H., Manson, F. J., Schmidlin, S. K., Avery, R. R., R. A., Clark (1996), Vincent, Empirical wind model for the upper, middle and lower atmosphere, J. Atmos. Terr. Phys. 58 (13), 1421–1447.

Hedin, A. E., E. L. Fleming, A. H. Manson, F. J. Schmidlin, S. K. Avery, R. R. Clark, S. J. Franke, G. J. Fraser, T. Tsuda, F. Vial, R. A. Vincent (1996), Empirical wind model for the upper, middle and lower atmosphere, J. Atmos. Terr. Phys., 58, 1421-1447, doi:10.1016/0021- 9169(95)00122-0.

Hedin, A. E., M. A., Biondi, R. G., Burnside, G., Hernandez, R. M., Johnson, T. L., Killeen, T. S., Virdi (1991), Revised global model of thermosphere winds using satellite and ground-based observations, J. Geophys. Res. 96 (A5), 7657–7688.

Hernandez, G., F. G. McCormac, R. W. Smith (1991), Austral thermospheric wind circulation and interplanetary magnetic field orientation, J. Geophys. Res., 96, 5777–5783, doi:10.1029/90JA02458.

He M., L., Liu, W., Wan, B., Ning, B., Zhao, J., Wen, X., Yue, H., Le (2009), A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC, J. Geophys. Res., 114, A12309, doi:10.1029/2009JA014175.

Horvath, I., and E. A. Essex (2003), The Weddell sea anomaly observed with the Topex satellite data, J. Atmos. Sol. Terr. Phys., 65, 693–706, doi:10.1016/S1364-6826(03)00083-X.

Horvath, I., and B. C. Lovell (2009), Investigating the relationships among the South Atlantic Magnetic Anomaly, southern nighttime midlatitudes trough, and nighttime Weddell Sea Anomaly during southern summer, J. Geophys. Res., 114, A02306, doi:10.1029/2008JA013719.

Huba J. D., G., Joyce, J. A., Fedder (2000), Sami2 is Another Model of the Ionosphere (SAMI2), A new low-latitude ionosphere model, J. Geophys. Res., 105, 23,035-23,053, doi:10.1029/2000JA000035.

Immel, T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, L. J. Paxton (2006), Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, doi:10.1029/2006GL026161.

Jee, G., R. W., Schunk, L., Scherliess (2004), Analysis of TEC data from the TOPEX/Poseidon mission, J. Geophys. Res. 109, A01301. doi:10.1029/2003JA010058.

Jee G., A. G., Burns, Y. H., Kim, W., Wang (2009), Seasonal and solar activity variations of the Weddell Sea Anomaly observed in the TOPEX total electron content measurements, J. Geophys. Res., 114, A04307, doi:10.1029/2008JA013801.

Kakinami Y., C. H., Lin, J. Y., Liu, M., Kamogawa, S., Watanabe, M., Parrot (2011), Daytime longitudinal structures of electron density and temperature in the topside ionosphere observed by the Hinotori and DEMETER satellites, J. Geophys. Res., 116, A05316, doi:10.1029/2010JA015632.

King-Hele, D. G. (1970), Average rotational speed of the upper atmosphere from changes in satellite orbits, Space Res. 10, 537.

Kil Hyosub, R. DeMajistre, L. J. Paxton, Y. L. Zhang (2006), Nighttime F-region morphology in the low and middle latitudes seen from DMSP F15 and TIMED/GUVI, Journal of Atmospheric and Solar-Terrestrial Physics 68 1672–1681.



Klimenko, M. V., V. V. Klimenko, A. T. Karpachev, K. G. Ratovsky, A. E. Stepanov (2014), Spatial features of Weddell Sea and Yakutsk Anomalies in foF2 diurnal variations during high solar activity periods: Interkosmos-19 satellite and ground-based ionosonde observations, IRI reproduction and GSM TIP model simulation, Advances in Space Research 55 (2015) 2020–2032.

Lei, J., et al., (2007) Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results, J. Geophys. Res., 112, A07308, doi:10.1029/2006JA012240.

Lilensten, J., C., Lathuillere (1995), The meridional thermospheric neutral wind measured by the EISCAT radar, J. Geomag. Geoelec. 47 (9), 911–92.

Lin, C. H., J. Y. Liu, T. W. Fang, P. Y. Chang, H. F. Tsai, C. H. Chen, C. C. Hsiao (2007), Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC, Geophys. Res. Lett., 34, L19101, doi:10.1029/2007GL030741.

Lin C. H., J. Y., Liu, C. Z., Cheng, C. H., Chen, C. H., Liu, W., Wang, A. G., Burns, J., Lei (2009), Three-dimensional ionospheric electron density structure of the Weddell Sea Anomaly, J. Geophys. Res., 114, A02312, doi:10.1029/2008JA013455.

Lin C. H., C. H., Liu, J. Y., Liu, C. H., Chen, A. G., Burns, W., Wang (2010), Mid-latitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT-3/COSMIC, J. Geophys. Res., 115, A03308, doi:10.1029/2009JA014084.

Liu H., S. V., Thampi, M., Yamamoto (2010), Phase reversal of the diurnal cycle in the midlatitude ionosphere, J. Geophys. Res., 115, A01305, doi:10.1029/2009JA014689.

Liu J. Y., F. Y., Chang, K. I., Oyama, Y., Kakinami, H. C., Yeh, T. L., Yeh, S. B., Jiang, M., Parrot (2014), Topside ionospheric electron temperature and density along the Weddell Sea latitude, J. Geophys. Res. doi: 10.1002/2014JA020227.

Liu H., M., Yamamoto (2011), Weakening of the mid-latitude summer nighttime anomaly during geomagnetic storms, Earth, Planets and Space, 63(4): 371-375, doi:10.5047/eps.2010.11.012.

Mamrukov, A. P. (1971), Evening anomalous enhancement of ionization in F-region, Geomagn. Aeron. 21 (6), 984–988.

Meriwether, J. W., J. W., Moody, M. A., Biondi, R. G., Roble (1986), Optical interferometric measurements of nighttime equatorial thermospheric winds at Arequipa, Peru, J. Geophys. Res. 91, 5557.

Namba, S., and K. I. Maeda (1939), Radio Wave Propagation, 86 pp., Corona, Tokyo.

Penndorf R. (1965), The average ionospheric conditions over the Antarctic in Geomagnetism and Aeronomy, Ant. Res. Ser., vol 4, edited by A. H. Waynick, pp1-45, AGU, Washington, D. C..

Ren, Z., W. Wan, L. Liu, H. Le, M. He (2012), Simulated midlatitude summer nighttime anomaly in realistic geomagnetic fields, J. Geophys. Res., 117(A03323), doi:10.1029/2011JA017010.

Richmond, A. D. (1983), Thermospheric Dynamics and Electrodynamics, Solar Terrestrial Physics, edited by R. L. Corovillano and J. M. Forbes, pp. 523-607, D. Reidel, Dordrecht.

Richmond, A. D., E. C., Ridley, R. G., Roble (1992), A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett. 19, 601–604.

Rishbeth, H. (1967), The effect of winds on the ionospheric F2-peak, J. Atmos. Terr. Phys., 29, 225–238.

Rishbeth, H., and O. K. Garriot (1969), Introduction to Ionospheric Physics, Academic Press, New York,.

Rishbeth, H. (1972), Thermospheric winds and the F-region: A review, J. Atmos. Terr. Phys., 34, 1–47.

Rishbeth, H., R. A. Heelis, I. C. F. Mu¨ller-Wodarg (2004), Variations of thermospheric composition according to AE-C data and CTIP modeling, Ann. Geophys., 22, 441–452.

Rocken, C., Y. H. Kuo, W. Schreiner, D. Hunt, S. Sokolovskiy, C. McCormick (2000), COSMIC system description, Terr. Atmos. Oceanic Sci., 11(1), 21–52.

Salah, J. E., and J. M. Holt (1974), Midlatitude thermospheric winds from incoherent scatter radar and theory, Radio Sci., 9(2), 301–313, doi:10.1029/RS009i002p00301.

Sagawa, E., T. J. Immel, H. U. Frey, S. B. Mende (2005), Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV, J. Geophys. Res., 110, A11302, doi:10.1029/2004JA010848.

Scherliess, L., and B. G. Fejer (1999), Radar and satellite global equatorial F-region vertical drift model, J. Geophys. Res., 104(A4), 6829–6842.

Schreiner, W. S., S. V. Sokolovskiy, C. Rocken, D. C. Hunt (1999), Analysis and validation of GPS/MET radio occultation data in the ionosphere, Radio Sci., 34(4), 949–966.

Schreiner, W., C. Rocken, S. Sokolovskiy, D. Hunt (2009), Quality Assessment of COSMIC/FORMOSAT-3 GPS Radio Occultation Data Derived from Single- and Double-Difference Atmospheric Excess Phase Processing, GPS Solutions, 14(1), 13-22, doi:10.1007/s10291-009-0132-5.

Slominska, E., J. Blecki, J. P. Lebreton, M. Parrot, J. Slominski (2014), Seasonal trends of nighttime plasma density enhancements in the topside ionosphere, J. Geophys. Res., 119, doi:10.1002/2014JA020181.

Sipler, D. P., B. B. Luokkala, M. A. Biondi (1982), Fabry-Perot determinations of midlatitude F-Region neutral winds and temperatures from 1975 to 1979, Planet. Space Sci., 30, 1025–1032, doi:10.1016/0032-0633(82)90152-0.


Sipler, D. P., and M. A., Biondi (1978), Equatorial F-region neutral winds from nightglow OI 630.0 nm Doppler shifts, Geophys. Res. Lett. 5, 373.

Sipler, D. P., M. E., Hagan, M. E., Zipf, M. A., Biondi (1991), Combined optical and radar wind measurements in the F-region over Millstone Hill, J. Geophys. Res. 96 (12), 21255–21262.

Strickland, D. J., R. R. Meier, R. L. Walterscheid, J. D. Craven, A. B. Christensen, L. J. Paxton, D. Morrison, G. Crowley (2004), Quiet-time seasonal behavior of the thermosphere seen in the far ultraviolet dayglow, J. Geophys. Res., 109, A01302, doi:10.1029/2003JA010220.

Swinbank, R., and D. A. Ortland (2003), Compilation of wind data for the Upper Atmosphere Research Satellite (UARS) Reference Atmosphere Project, J. Geophys. Res., 108(D19), 4615, doi:10.1029/2002JD003135.

Syndergaard, S. (2002), A new algorithm for retrieving GPS radio occultation total electron content, Geophys. Res. Lett., 29(16), 1808, doi:10.1029/2001GL014478.

Thampi S. V., C., Lin, H., Liu, M., Yamamoto (2009), First tomographic observations of the Midlatitudes Summer Night Anomaly over Japan, J. Geophys. Res., 114, A10318, doi:10.1029/2009JA014439.

Thampi S. V., N., Balan, C., Lin, H., Liu, M., Yamamoto (2011), Mid-latitude summer nighttime anomaly (MSNA)-observations and models simulations, Ann. Geophys., 29, 157-165, doi:10.5194/angeo-29-157-2011.

Titheridge J. E. (1995), Winds in the ionosphere-A review, J. Atmos. Terr. Phys., 57, 1681-1714.

Venkatraman, S., and R. A., Heelis (2000), Interhemispheric plasma flows in the equatorial topside ionosphere, Journal of Geophysical Research 105, 18,457–18,464.

West, K. H., and R. A., Heelis (1996), Longitude variations in ion composition in the morning and evening topside equatorial ionosphere near solar minimum, J. Geophys. Res. 101, 7951–7960.
West, K. H., R. A., Heelis, F. J., Rich (1997), Solar activity variations in the composition of the low-latitude topside ionosphere, J. Geophys. Res. 102, 295–305.

Wu, Q., D. A. Ortland, B. Foster, R. G. Roble (2012), Simulation of nonmigrating tide influences on the thermosphere and ionosphere with a TIMED data driven TIEGCM, Journal of Atmospheric and Solar-Terrestrial Physics 90–91, 61–67.

Yue X, W. S., Schreiner, J., Lei, S. V., Sokolovskiy, C., Rocken, D. C., Hunt, Y. H., Kuo (2010), Error analysis of Abel retrieved electron density profiles from radio-occultation measurements, Ann. Geophys., 28, 217–222.

Zakharenkova I. E., A., Krankowski, I. I., Shagimuratov, V. Y., Cherniak, A., Krypiak-Gregorczyk, P., Wielgosz, A. F., Lagovsky (2012), Observation of the ionospheric storm of October 11, 2008 using FORMOSAT-3/COSMIC data, Earth, Planets and Space, 64(6): 505-512, doi:10.5047/eps.2011.06.046.

Zhang, Y., L. J. Paxton, C.-I. Meng, D. Morrison, B. Wolven, H. Kil (2004), Double dayside detached auroras: TIMED/GUVI observations, Geophys. Res. Lett., VOL. 31, L10801, doi:10.1029/2003GL018949.
指導教授 劉正彥(LIU JANN-YENQ) 審核日期 2017-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明