博碩士論文 103626012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.16.81.171
姓名 吳函(Han Wu)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 發展地震海嘯關係分析法並研究台灣之潛在海嘯威脅
(The Development of the Earthquake Tsunami Relationship Analysis and the Study of Potential Tsunami Threat in Taiwan)
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 發展風暴潮影響強度分析法以重建1845雲林口湖風暴朝事件★ 發展適用於印度洋之氣旋風暴潮預報模式
★ 2006年屏東外海地震引發海嘯的數值模擬探討★ 馬尼拉海溝地震引發海嘯的潛勢分析
★ 三維海嘯湧潮對近岸結構物之影響★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用
★ 以三維賓漢流數值模式模擬海嘯沖刷坑之發展★ 以三維數值模擬探討海嘯湧潮與結構物之交互作用
★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用★ 海岸樹林及消波結構物對海嘯能量消散之模擬
★ 重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬★ 裙礁流場之數值分析與消能特性之探討
★ 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究★ 台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣位於環太平洋地震帶之西側,歷史上多起重大災難性地震海嘯發源於此處,因此台灣之海嘯研究為一重要之議題。為清楚了解台灣之海嘯潛在威脅,本研究研發地震-海嘯關係圖 (Seismic-Tsunami Relationship, STR),分析可能之海嘯危害。STR以影響強度分析法 (Impact intensity Analysis, IIA) 為基礎,將研究區域以 Cornell Multi-grid Coupled Tsunami Model (COMCOT) 進行單元海嘯源之格林函數計算,計算結果以最大波高整理為IIA分布圖,並以地震尺度關係式 (Source-Scaling Relationship) 對照出等價之地震矩規模。透過STR,可快速評定各地點之海嘯威脅程度,除可排除無風險或低風險之區域外,更可精確掌握海嘯源之敏感區域。
1604年之泉州大地震與1771年之八重山大地震,此兩起事件於當地均有海嘯之記載,然而鄰近的台灣沒有相關之文獻紀錄。本研究將藉由STR法,搭配情境分析法還原該事件對台灣之影響,並進而分析台灣鄰近海域之海嘯高風險區域。由分析成果可知,台北以南及台南以北面臨來自台灣海峽之海嘯威脅;宜蘭地區對台灣東部海域之海嘯威脅極具敏感性;花蓮地區面臨來自琉球島弧之海嘯威脅;台東地區面臨著來自亞普海溝之海嘯威脅。
摘要(英)
Taiwan is located on the west side of the Circum-Pacific Seismic Zone in which numerous of the catastrophic earthquake tsunamis were originated. As a result, the tsunami hazard evaluation is one of the important issues. In order to understand the tsunami threat to Taiwan in the surrounding waters, “Seismic-Tsunami Relationship” (STR) was developed to visualize any impact of possible tsunami hazards. “Cornell Multi-grid Coupled Tsunami Model” (COMCOT) was applied to calculate the Greens Function of each unit tsunami. The calculated results are arranged at the maximum wave height as IIA distribution. The corresponding magnitude MW of the result in the equivalent intensity was replaced with the “Source-Scale Relationship”. Through the STR, The tsunami threat can be quickly assessed in study areas. In addition to excluding risk-free or low-risk areas, an accurate distribution of the tsunami sensitive area can be obtained.
The Quanzhou Earthquake in 1604 and the Yaeyama Earthquake in 1771 which both generated tsunamis and were recorded in their local area, while there is no relevant documentary record in Taiwan. Scenarios analysis and STR method were applied to understand the events in this study as well. According to the results, The western coast of Taiwan along Taipei to Tainan is facing the tsunami threat from the Taiwan Strait; the northeast Taiwan (Yilan region) is sensitive to the tsunami threat in the eastern waters of Taiwan. As for the eastern Taiwan, Hualien and Taitung are facing the tsunami threat from the Ryukyu Trench and Yap Trench, respectively.
關鍵字(中) ★ COMCOT
★ Seismic-Tsunami Relationship
★ 1771八重山地震
★ 1604泉州地震
關鍵字(英) ★ COMCOT
★ Seismic-Tsunami Relationship
★ 1771 Yaeyama Earthquake
★ 1604 Quanzhou Earthquake
論文目次
中文摘要 V
Abstract VI
致謝辭 VII
目錄 VIII
圖目錄 XI
表目錄 XVII
第1章 緒論 1
1.1. 前言及研究動機 1
1.2. 文獻回顧 5
1.2.1. 泉州地震海嘯研究 5
1.2.2. 八重山地震海嘯研究 9
1.3. 研究方法 20
第2章 模式介紹與數值方法 21
2.1. 地震-海嘯關係圖 21
2.1.1. 單元海嘯事件 22
2.1.2. 影響強度分析法 26
2.1.3. 體積通量法及海嘯源逆向追蹤法 29
2.1.4. 地震海嘯關係圖之繪製方法與流程 33
2.2. 模式簡介 38
2.2.1. 統御方程式 39
2.2.2. 多層套疊巢狀網格系統 42
2.2.3. 移動邊界法 43
第3章 方法驗證 46
3.1. 單元海嘯各參數對其結果之影響 46
3.2. 地震海嘯關係圖之驗證 51
3.3. 海嘯分析方法之比較 64
第4章 案例之模擬分析及對台灣之影響 72
4.1. 古海嘯之案例還原 72
4.1.1. 1604年泉州地震海嘯 72
4.1.2. 1771年八重山地震海嘯 80
4.2. 利用地震海嘯關係圖分析台灣各地區面臨之潛在海嘯危害 96
第5章 結論與建議 125
5.1. 結論 125
5.2. 建議 126
第6章 參考文獻 127
參考文獻

1. Araoka, D., Inoue, M., Suzuki, A., Yokoyama, Y., Edwards, R. L., Cheng, H., ... & Kawahata, H. (2010). Historic 1771 Meiwa tsunami confirmed by high‐resolution U/Th dating of massive Porites coral boulders at Ishigaki Island in the Ryukyus, Japan. Geochemistry, Geophysics, Geosystems, 11(6).
2. Born, M., & Wolf, E. (1999). Principles of Optics, seventh expanded edition. Cambridge, England.
3. Cochard, R., Ranamukhaarachchi, S. L., Shivakoti, G. P., Shipin, O. V., Edwards, P. J., & Seeland, K. T. (2008). The 2004 tsunami in Aceh and Southern Thailand: a review on coastal ecosystems, wave hazards and vulnerability. Perspectives in Plant Ecology, Evolution and Systematics, 10(1), 3-40.
4. Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists (Vol. 2). World Scientific Publishing Co Inc.
5. Francis, P. (1993). Volcanoes. A planetary perspective. Volcanoes. A planetary perspective., by Francis, P.. Clarendon Press, Oxford (UK), 1993, 452 p., ISBN 0-19-854452-9, ISBN 0-19-854033-7 (paper)., 1.
6. Fresnel, A. (1816). Ann Chim et Phys.
7. Goto, K., Kawana, T., & Imamura, F. (2010). Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan. Earth-Science Reviews, 102(1), 77-99.
8. Hanks, T. C. (1979). b values and ω− γ seismic source models: Implications for tectonic stress variations along active crustal fault zones and the estimation of high‐frequency strong ground motion. Journal of Geophysical Research: Solid Earth, 84(B5), 2235-2242.
9. Hisamatsu, A., Goto, K., & Imamura, F. (2014). Local paleo-tsunami size evaluation using numerical modeling for boulder transport at Ishigaki Island, Japan. Episodes, 37(4), 265-276.
10. Imamura, F., Goto, K., & Ohkubo, S. (2008). A numerical model for the transport of a boulder by tsunami. Journal of Geophysical Research: Oceans, 113(C1).
11. International Federation of Red Cross and Red Crescent Societies (1995).," World Disasters Report 2005". Third World Planning Review, 17(3), 357.
12. Kamewada, S. (2005). 八重山の明和大津波.
13. Kanamori, H. (1977). The energy release in great earthquakes. Journal of geophysical research, 82(20), 2981-2987.
14. Kato, Y. (1989). Yaeyama Seismic Tsunami (1771) in the Miyako Islands recorded in the newly-found archives “Otoiai-gaku,”. Bulletin of the College of Science, University of the Ryukyus, 47, 153-158.
15. Kawana, T. (2000). Field guidebook for tsunami disaster prevention. Research association for Tokai, To-nankai and Nankai Earthquake Tsunamis, Osaka, 25.
16. Kramers. H. A. (1957). “Quantum Mechanics”, publisher Dover, 1957, pp. 62 ISBN 978-0-486-66772-0.
17. Kubo, A., & Fukuyama, E. (2003). Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes. Earth and Planetary Science Letters, 210(1), 305-316.
18. Lay, T., Kanamori, H., Ammon, C. J., Nettles, M., Ward, S. N., Aster, R. C., ... & DeShon, H. R. (2005). The great Sumatra-Andaman earthquake of 26 december 2004. Science, 308(5725), 1127-1133.
19. Lee, W. H. K., Wu, F. T., & Wang, S. C. (1978). A catalog of instrumentally determined earthquakes in China (magnitude≧ 6) compiled from various sources. Bulletin of the Seismological Society of America, 68(2), 383-398.
20. Levy, J. K., & Gopalakrishnan, C. (2005). Promoting Disaster-resilient Communities: The Great Sumatra–Andaman Earthquake of 26 December 2004 and the Resulting Indian Ocean Tsunami. Water Resources, 21(4), 543-559.
21. Liu, P. L. –F., Woo, S. B., & Cho, Y. S. (1998). Computer programs for tsunami propagation and inundation. Cornell University.
22. Ma, K. F., & Lee, M. F. (1997). Simulation of historical tsunamis in the Taiwan region. Terrestrial, Atmospheric and Oceanic Sciences, 8(1), 13-30.
23. Miyazawa, K., Goto, K., & Imamura, F. (2012). Re-evaluation of the 1771 Meiwa Tsunami source model, southern Ryukyu Islands, Japan. In Submarine Mass Movements and Their Consequences (pp. 497-506). Springer Netherlands.
24. Mori, N., Takahashi, T., Yasuda, T., & Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run‐up. Geophysical research letters, 38(7).
25. Nakamura, M. (2006). Source fault model of the 1771 Yaeyama tsunami, southern Ryukyu Islands, Japan, inferred from numerical simulation. pure and applied geophysics, 163(1), 41-54.
26. Nakamura, M. (2009). Fault model of the 1771 Yaeyama earthquake along the Ryukyu Trench estimated from the devastating tsunami. Geophysical Research Letters, 36(19).
27. Nakata, T., & Kawana, T. (1995). Historical and prehistorical large tsunamis in the southern Ryukyus, Japan. In Tsunami: Progress in prediction, disaster prevention and warning (pp. 211-221). Springer Netherlands.
28. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America, 75(4), 1135-1154.
29. Suzuki, A., Yokoyama, Y., Kan, H., Minoshima, K., Matsuzaki, H., Hamanaka, N., & Kawahata, H. (2008). Identification of 1771 Meiwa Tsunami deposits using a combination of radiocarbon dating and oxygen isotope microprofiling of emerged massive Porites boulders. Quaternary Geochronology, 3(3), 226-234.
30. USGS (2012). Ring of Fire, Earthquake Glossary.
31. Wang, X. (2009). User manual for COMCOT version 1.7 (first draft). Cornel University, 65.
32. Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards And Earth System Science, 3(5), 391-402.
33. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.
34. Wu, T. R. (2012). Deterministic study on the potential large tsunami hazard in Taiwan. Journal of Earthquake and Tsunami, 6(03), 1250034.
35. Yen, Y. T., & Ma, K. F. (2011). Source-scaling relationship for M 4.6–8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan. Bulletin of the Seismological Society of America, 101(2), 464-481.
36. 山村武彥,「1771 明和の大津波跡 (現地調査)」,2010。
37. 中央地震工作小組辦公室,「中國地震目錄」,科學出版社,1971。
38. 日本國土地理院,「1771年八重山地震津波 (明和の大津波)」,1994。
39. 王郁如、馬國鳳,「環太平洋地震帶」,地質知識服務網地質百科,2014。
40. 吳珮萱,「由台灣北部的地質環境討論1867年基隆海嘯的可能性」,碩士論文,中國文化大學理學院地學研究所地質組,2016。
41. 吳祚任,「台灣自1661年起之11次台灣歷史海嘯紀錄」,2013。
42. 吳維燦,「1604 年福建泉州8級地震」,中國特大地震研究,北京,地震出版社,頁182-191,1988。
43. 李孟芬,「台灣地區地震海嘯之可能性研究」,碩士論文,國立中央大學地球物理研究所,1996。
44. 李宗祐、李金生,「罕見!金門一天兩震,無關川震」,中國時報,2008。
45. 李俊叡,「台灣海嘯速算系統建置暨 1867 年基隆海嘯事件之還原與分析」,碩士論文,國立中央大學水文與海洋科學研究所,2014。
46. 李昭興,「孕育中的龜山海底火山」,科學發展,5月,437期,2009。
47. 李珮瑜,「蘭嶼海嘯石與 1867 年基隆海嘯之動力分析」,水文與海洋科學研究所,碩士論文,2015。
48. 李善邦,「中國地震目錄」,中國科學院,地球物理研究所,1960。
49. 周學曾,「晉江縣誌」,卷之七十四,1830。
50. 牧野清,「八重山の明和大津波,城野印刷,1968。
51. 姜志禮,「重修洛陽橋記」碑,1609。
52. 馬國鳳、簡文峰、宋德濡,「台灣地區近地海嘯地震的危害性評估」,行政院國家科學委員會科學技術資料中心,CWB85-2E-19,1996。
53. 許樹坤,「台灣附近海域的海底山崩調查與分析(II) 」,行政院國家科學委員會專題研究計畫,2010。
54. 郭增建,馬宗晉,「中國特大地震研究」,第1卷,中國特大地震研究,地震出版社,1988。
55. 陳伯飛,「利用 W 波相逆推震源參數與單位海嘯建立南中國海海嘯預警系統」,財團法人國家實驗研究院科技政策研究與資訊中心,2011。
56. 陳泗東,「1604年與1607年泉州兩次強地震考述」,幸園筆耕錄,108-128,2003。
57. 程卓,「泉州府誌」,卷七十三,1763。
58. 黃昭,「1604 年泉州海外大地震及其海嘯影響分析」,地震,第 4 期,2006。
59. 廖玲琬,「臺灣東部海嘯潛勢評估」,碩士論文,國立中央大學地球物理研究所,2008。
60. 劉翠溶,「漢人拓墾與聚落之形成-臺灣環境變遷之起始」,中國環境史論文集,頁295-347,1995。
61. 慶世村恒任,「宮古史傳」,2008。
62. 蔡淑玲,「台灣閩南語地名的語言層次與文化層次」,台灣語言教育與研究,2003。
63. 鄭世楠,「台灣地區歷史地震資料之建置」,中央氣象局地震技術報告彙編,60 卷,432-433,2011。
64. 鄭世楠、王子賓,「台灣地區地震目錄的建置(II)」,中央氣象局地震測報中心計畫,2009。
65. 鄭世楠、葉永田,「台灣歷史災害地震對社會文化的衝擊」,921 震災與社會文化重建研討會,9月,台北,1-19,2001。
66. 謝毓壽,「閩粵海外的歷史地震活動」,地震學報,第4期 (505-516),1991。
指導教授 吳祚任(Tso-Ren Wu) 審核日期 2017-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明