參考文獻 |
參考資料
[1] S.L. Miller. A production of amino acids under possible primitive earth con-ditions. Science, 117:528–529, 1953.
[2] J. Or’o. Mechanism of synthesis of adenine from hydrogen cyanide under pos-sible primitive earth conditions. Nature, 191:1193–1194, 1961.
[3] M.R. Walter. Earth‘s earliest biosphere: Its origin and evolution, volume 187-
213. Princeton University Press, 1983.
[4] G.F. Joyce. Rna evolution and the origins of life. Nature, 338:217–224, 1989.
[5] G.F. Joyce. The antiquity of rna based evolution. Nature, 418:214–220, 2002.
[6] L.D. Russell. D.P. Clark. Molecular Biology made simple and fun 2/e. Cache River Press, 2000.
[7] W. K. Johnston and et al. Rna-catalyzed rna polymerization: Accurate and general rna-templated primer extension. Science, 292:1319–1325, 2001.
[8] B. Lewin. Genes VII. Oxford University Press, 2000.
[9] E. Charga.. Structure and function of nucleic acids as cell constituents. Fed. Proc., 10:654–659, 1951.
[10] R. Rudner, J. D. Karkas, and E. Charga.. Separation of b. subtilis dna into complementary strands. iii. direct analysis. Proc. Natl. Acad. Sci. USA, 60:921–922, 1968.
[11] L.C. Hsieh. Universal Lengths of Bacterial Genomes and Model for Genome Growth. PhD thesis, NCU, 2003.
[12] W.H. Li. Molecular Evolution. Sinauer Associates, 1997.
[13] L.F. Lo. Physical aspects on life evolution. Shanghai scienti.c & Technical Publishers, 2000.
[14] Wikipedia.
[15] Ernst Mayr. Biological classi.cation: Toward a synthesis of opposing method-ologies. Science, 214(4520):510–516, 1981.
[16] C R Woese, O Kandler, and M L Wheelis. Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proceed-
ings of the National Academy of Sciences of the United States of America, 87(12):4576–4579, 1990.
[17] C.E. Shannon. A mathematical theory of communication. Bell Sys. Techn. J., 27:379–423, 623–656, 1948.
[18] National center for biotechnology information genome database.
[19] Francis Collins & David Galas. A new .ve-year plan for the u.s. human genome project. Science, 262:43–46, 1993.
[20] David J. Parry-Smith Teresa K. Attwood. Introduction to bioinformatics. Addison Wesley Longman Limited, 2003.
[21] Rice annotation project database.
[22] B-L Hao, H-C Lee, and S-Y Zhang. Fractals related to long dna sequences and complete genomes. Chaos, Solitons and Fractals, 11:825–836, 2000.
[23] C.H. Chang, L.C. Hsieh, T.Y. Chen, H.D. Chen, L.F. Luo, and H.C. Lee. Shannon information in complete genomes. J. Bioinfo. & Comp. Biology, 3:587–608, 2005.
[24] J.W. Fickett, D.C. Torney, and D.R. Wolf. Base compositional structure of genomes. Genomics, 13:1056–64, 1992.
[25] HM Xie and BL Hao. Visualization of k-tuple distribution in procaryote com-plete genomes and their randomized counterparts. In Proceedings of the IEEE Computer Society Bioinformatics Conference, pages 31–42, 2002.
[26] L.S. Hsieh and et al. Minimal model for genome evolution and growth. Phys. Rev. Lett., 90:018101–104, 2003.
[27] H.D. Chen and et al. Divergence and shannon information in genomes. Phys. Rev. Lett., 94:178103, 2005.
[28] C.K. Peng and et al. Mosaic organization of dna nucleotides. Phys. Rev. E, 49:1685–1689, 1994.
[29] P. Bernaola-Galv’an and et al. Study of statistical correlations in dna se-quences. Gene, 300:105–115, 2002.
[30] PW Messer, PF Arndt, and M Lassig. Solvable sequence evolution models and genomic correlations. Phys. Rev. Lett., 94:138103, 2005.
[31] Manolis Kellis, Bruce W. Birren, and Eric S. Lander. Proof and evolutionary analysis of ancient genome duplication in the yeast saccharomyces cerevisiae. Nature, 428(6983):617–624, April 2004.
[32] J. Spring. Genome duplication strikes back. Nature Gen., 31:128–129, 2002.
[33] D. Grant, P. Cregan, and R.C. Shoemaker. Genome organization in dicots:
Genome duplication in arabidopsis and synteny between soybean and ara-bidopsis. Proc. Natl. Acad. Sci. USA, 97:4168–4173, 2000.
[34] P.E. Hansche, V. Beres, and P. Lange. Gene duplication in saccharomyces cerevisiae. Genetics, 88:673–687, 1978.
[35] S. Ohno. Evolution by gene duplication. Springer, New York, 1970.
[36] J. Zhang. Evolution by gene duplication: an update. Trends Eco. Evol., 18:292–298, 2003.
[37] Hubert P. Yockey. Information Theory, Evolution and the Origin of Life. Cambridge University Press, 2005.
[38] A.M. Weiner, P.L. Deininger, and A. Efstratiadis. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse .ow of ge-netic information. Ann. Rev. Biochem., 55:631–661, 1986.
[39] J.M. McGrath, M.M. Jancso, and E. Pichersky. Duplicate sequences with a similarity to expressed genes in the genome of arabidopsis thaliana. Theo. App. Gen., 86:880–888, 1993.
[40] Axel Meyer. Molecular evolution: Duplication, duplication. Nature, 421(6918):31–32, January 2003.
[41] Michael Lynch and John S. Conery. The evolutionary fate and consequences of duplicate genes. Science, 290(5494):1151–1155, 2000.
[42] M. Lynch and A. Force. The probability of duplicate gene preservation by subfunctionalization. Genetics, 154:459–473, 2000.
[43] Chung-I Wu and Chau-Ti Ting. Genes and speciation. Nat Rev Genet, 5(2):114–122, February 2004.
[44] Zhenglong Gu, Lars M. Steinmetz, Xun Gu, Curt Scharfe, Ronald W. Davis, and Wen-Hsiung Li. Role of duplicate genes in genetic robustness against null mutations. Nature, 421(6918):63–66, January 2003.
[45] Albert-Laszlo Barabasi and Zoltan N. Oltvai. Network biology: understanding the cell’s functional organization. Nat Rev Genet, 5(2):101–113, February 2004.
[46] M. Kimura. The neutral theory of molecular evolution. Cambridge Univ. Press, 1983.
[47] Motoo KIMURA. The neutral theory of molecular evolution: A review of recent evidence. The Japanese Journal of Genetics, 66(4):367–386, 1991.
[48] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett., 59(4):381–384, Jul 1987.
[49] Ge Liu, NISC Comparative Sequencing Program, Shaying Zhao, Je.rey A.
Bailey, S. Cenk Sahinalp, Can Alkan, Eray Tuzun, Eric D. Green, and Evan E. Eichler. Analysis of primate genomic variation reveals a repeat-driven expan-sion of the human genome. Genome Research, 13(3):358–368, 2003.
[50] Tomas Marques-Bonet, Je.rey M. Kidd, Mario Ventura, Tina A. Graves, Ze Cheng, LaDeana W. Hillier, Zhaoshi Jiang, Carl Baker, Ray Malfavon-Borja, Lucinda A. Fulton, Can Alkan, Gozde Aksay, Santhosh Girirajan, Priscillia Siswara, Lin Chen, Maria Francesca Cardone, Arcadi Navarro, Elaine R. Mardis, Richard K. Wilson, and Evan E. Eichler. A burst of seg-mental duplications in the genome of the african great ape ancestor. Nature, 457(7231):877–881, February 2009.
[51] J. A. Bailey and et al. Recent segmental duplications in the human genome. Science, 297:1003–1007, 2002.
|