博碩士論文 104327015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.117.184.62
姓名 林柏毅(Bo-Yi Lin)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 超親水電漿聚合薄膜之研究
(Research of Superhydrophilic film deposited by plasma polymerization)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯與超導金屬介面的電子穿隧行為
★ 石墨烯透明導電膜與其成長模型之研究★ 電漿輔助石墨烯直接成長在Pt上成長機制
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 奈微米球粗化基板技術 暨提升OLED元件出光效率研究★ 銀-聚苯乙烯殼核球於高分子分散液晶薄膜元件之應用
★ 快速退火影響石墨烯晶粒尺寸之研究★ 電漿輔助低溫化學氣相沉積法直接成長石墨烯/金屬複合透明導電薄膜
★ ITO 奈微米週期結構電極提升OLED 元件發光效率之研究★ 以CaTiO3應用於鈣鈦礦太陽能電池電子傳輸層之研究
★ 奈微米結構於鈣鈦礦太陽能電池光捕捉應用之研究★ 快速退火生長高品質石墨烯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來有許多關於表面親疏水特性的研究,其中有一種表面的極端濕潤行為被稱之為超親水特性。當水滴滴在超親水表面上時,其水滴接觸角會小於10°,在此種表面上有利於水滴快速攤平的現象使其具有快速乾燥的優異性能,因此超親水表面具備快速蒸發冷卻、除霧等功能。
在本實驗中所製備之超親水電漿聚合薄膜,使用有機矽烷為製程反應氣體,經由電漿裂解、聚合過程最後沉積於基板上。透過改變製程參數,如陽極電壓,沉積時間等等,使得有機矽烷電漿聚合膜具有超親水特性,並在製程過程中使用光放射光譜儀做動態觀測,在提升陽極電壓情況之參數下,其CN訊號強度上升表示所沉積之薄膜含氮量提升,經水接觸角量測後具有小於10°之超親水特性。經由XPS分析薄膜元素組成比例,其結果為在此參數下之N/Si比例最高表示表面具有最多的含氮官能基,此官能基為有機矽烷電漿聚合薄膜具有超親水特性之主因。
光學特性方面,在玻璃基板上可見光平均穿透率皆大於90.4%,PC塑膠基板皆大於88.9%,具有良好之光學性質。
摘要(英)
In recent years there have been many research of surface hydrophobicity characteristics, in which there is a surface of extreme wet behavior known as super-hydrophilic properties. When the water droplets on the super-hydrophilic surface, the water contact angle is less than 10 °. On this surface is conducive to rapid spread of water so that it has a fast drying of the excellent performance, so super-hydrophilic surface with rapid evaporation cooling, Anti-fog and other functions.
In this research organic silane was used as the process reaction gas, finally organic silane Superhydrophilic thin film deposited on the substrate by plasma polymerization. By changing the process parameters, such as anode voltage, deposition time, etc., making the organic silane plasma polymer film with super-hydrophilic properties, using optical emission spectrometer for dynamic observation in the process. In the case of lifting the anode voltage, the increase in CN signal strength indicates that the nitrogen content of the thin film is increased. The water contact angle is less than 10 ° with super-hydrophilic characteristic measured by the water contact angle. Analysis of membrane element composition ratio by XPS, the results show that the highest N / Si ratio under the high anode voltage parameters indicates that the surface has the most nitrogen-containing functional groups. This functional group is the main reason for the super-hydrophilic properties of organic silane plasma polymer films.
Optical properties, the average visible light transmittance of glass substrates are greater than 90.4%, PC plastic substrates are greater than 88.9%, with good optical properties.
關鍵字(中) ★ 電漿
★ 超親水
關鍵字(英) ★ plasma
★ superhydrophilic
論文目次
摘要 i
Abstract ii
致謝 iv
目錄 vi
圖目錄 ix
表目錄 xi
第一章:緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 研究內容 3
1-4 本文架構 4
第二章:基礎理論與文獻回顧 5
2-1 電漿輔助化學氣相沉積 5
2-1-1 電漿基本原理 5
2-1-2 電漿聚合[12] 8
2-1-3 有機單體碎裂反應 10
2-2 親水性簡介 13
2-2-1 水接觸角 13
2-2-2 親疏水性 16
第三章:實驗方法與實驗儀器設備 17
3-1 實驗方法 17
3-1-1 實驗流程 17
3-1-2 實驗步驟 18
3-2 鍍膜系統 20
3-2-1 實驗有機單體 20
3-2-2 離子源系統 21
3-3 量測與分析之設備儀器 24
3-3-1 接觸角量測儀 24
3-3-2 可見光-近紅外光光譜儀 25
3-3-3 光放射光譜儀(OES) 25
3-3-4 X射線光電子能譜儀 27
3-3-5 原子力顯微鏡原理(AFM) 28
第四章:實驗結果與討論 32
4-1 電漿光譜分析 32
4-2 陽極電壓對有機單體電漿聚合薄膜親水特性之影響 35
4-3 XPS分析 38
4-4 持續性和粗糙度關係 44
4-4-1 鍍製時間和水接觸角維持時間關係 44
4-4-2 粗糙度和水接觸角維持時間關係 46
4-5 光學性質 49
4-6 防霧測試 51
第五章:結論 53
參考文獻 54
參考文獻
1. Barthlott, W. and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997. 202(1): p. 1-8.
2. Trost, M., et al., Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers. Applied optics, 2011. 50(9): p. C148-C153.
3. Hornbeck, L.J., Forming a low surface energy, wear resistant thin film on the surface of a device. 1995, Google Patents.
4. Klersy, P.J., D.C. Jablonski, and S.R. Ovshinsky, Thin-film structure for chalcogenide electrical switching devices and process therefor. 1993, Google Patents.
5. Carcia, P., et al., Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters, 2003. 82(7): p. 1117-1119.
6. Guan, K., Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO 2/SiO 2 films. Surface and Coatings Technology, 2005. 191(2): p. 155-160.
7. Fujishima, A., X. Zhang, and D.A. Tryk, TiO 2 photocatalysis and related surface phenomena. Surface Science Reports, 2008. 63(12): p. 515-582.
8. Premkumar, J. and S.B. Khoo, Electrochemically generated super-hydrophilic surfaces. Chemical communications, 2005(5): p. 640-642.
9. Tang, K., et al., Fabrication of superhydrophilic Cu 2 O and CuO membranes. Journal of membrane science, 2006. 286(1): p. 279-284.
10. Nakatani, T., et al., Imparting superhydrophilicity to diamond-like carbon by plasma surface treatment technique. New Diamond Frontier Carbon Technol., 2007. 17(6): p. 289-300.
11. 魏敬倫, 以反應性射頻磁控濺鍍搭配 HMDSO 電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究; Investigation of SiOx: C barrier films deposited by RF reactive magnetron sputtering coupled with HMDSO/O2 plasma polymerization. 2012, 國立中央大學.
12. 楊士賢, 以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究. 中原大學化學工程研究所學位論文, 2005: p. 1-117.
13. Xie, Q., et al., Facile Creation of a Super‐Amphiphobic Coating Surface with Bionic Microstructure. Advanced materials, 2004. 16(4): p. 302-305.
14. Grill, A., Cold plasma in materials fabrication. Vol. 151. 1994: IEEE Press, New York.
15. Oehr, C., et al., Plasma grafting—a method to obtain monofunctional surfaces. Surface and Coatings Technology, 1999. 116: p. 25-35.
16. Hegemann, D., R. Riedel, and C. Oehr, Influence of single-source precursors on PACVD-derived boron carbonitride thin films. Thin Solid Films, 1999. 339(1): p. 154-159.
17. Yasuda, H. and T. Hirotsu, Critical evaluation of conditions of plasma polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 1978. 16(4): p. 743-759.
18. Lecoq, E., et al., Plasma polymerization of APTES to elaborate nitrogen containing organosilicon thin films: influence of process parameters and discussion about the growing mechanisms. Plasma Processes and Polymers, 2013. 10(3): p. 250-261.
19. Celia, E., et al., Recent advances in designing superhydrophobic surfaces. Journal of colloid and interface science, 2013. 402: p. 1-18.
20. Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994.
21. Oliver, J., C. Huh, and S. Mason, An experimental study of some effects of solid surface roughness on wetting. Colloids and surfaces, 1980. 1(1): p. 79-104.
22. Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 1944. 40: p. 546-551.
23. Cassie, A., Contact angles. Discussions of the Faraday Society, 1948. 3: p. 11-16.
24. Macias-Montero, M., et al., Superhydrophobic supported Ag-NPs@ ZnO-nanorods with photoactivity in the visible range. Journal of Materials Chemistry, 2012. 22(4): p. 1341-1346.
25. Oliveira, S.M., N.M. Alves, and J.F. Mano, Cell interactions with superhydrophilic and superhydrophobic surfaces. Journal of Adhesion Science and Technology, 2014. 28(8-9): p. 843-863.
26. Myint, M.T.Z., et al., Hydrophobic/hydrophilic switching on zinc oxide micro-textured surface. Applied Surface Science, 2013. 264: p. 344-348.
27. Duez, C., et al., Dynamics of fakir liquids: from slip to splash. Journal of Adhesion Science and Technology, 2008. 22(3-4): p. 335-351.
28. Wang, J.-J., et al., High transmittance and superhydrophilicity of porous TiO 2/SiO 2 bi-layer films without UV irradiation. Surface and Coatings Technology, 2011. 205(12): p. 3596-3599.
29. Lakshmi, R., et al., Fabrication of superhydrophobic and oleophobic sol–gel nanocomposite coating. Surface and Coatings Technology, 2012. 206(19): p. 3888-3894.
30. Xu, L. and J. He, Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles. Langmuir, 2012. 28(19): p. 7512-7518.
31. Li, X., X. Du, and J. He, Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles. Langmuir, 2010. 26(16): p. 13528-13534.
32. Ding, H., et al., Hydrophobicity of polyaniline microspheres deposited on a glass substrate. Macromolecular rapid communications, 2006. 27(13): p. 1029-1034.
33. Cape, J., CONTACT ANGLES OF WATER DROPLETS ON NEEDLES OF SCOTS PINE (PINUS SYLVESTEIS) GROWING IN POLLUTED ATMOSPHERES. New Phytologist, 1983. 93(2): p. 293-299.
34. Zou, Y., J.N. Kizhakkedathu, and D.E. Brooks, Surface modification of polyvinyl chloride sheets via growth of hydrophilic polymer brushes. Macromolecules, 2009. 42(9): p. 3258-3268.
35. Pesonen-Leinonen, E., et al., Can contact angle measurements be used to predict soiling and cleaning of plastic flooring materials? Contact angle, wettability and adhesion, 2006. 4: p. 203.
36. 李正中, 光學薄膜與鍍膜技術. 2006, 台北: 藝軒圖書出版社.
37. Francis, A., et al., Quenching of the 750.4 nm argon actinometry line by H 2 and several hydrocarbon molecules. Applied physics letters, 1997. 71(26): p. 3796-3798.
38. 潘彥妤, 微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用. 中原大學化學工程研究所學位論文, 2008: p. 1-102.
39. Clay, K., et al., Characterization of a‐C: H: N deposition from CH4/N2 rf plasmas using optical emission spectroscopy. Journal of applied physics, 1996. 79(9): p. 7227-7233.
40. Crintea, D., et al., Plasma diagnostics by optical emission spectroscopy on argon and comparison with Thomson scattering. Journal of Physics D: Applied Physics, 2009. 42(4): p. 045208.
41. Sterpone, F., et al., Water hydrogen-bond dynamics around amino acids: the key role of hydrophilic hydrogen-bond acceptor groups. The Journal of Physical Chemistry B, 2010. 114(5): p. 2083-2089.
42. 梁文傑, 眾志成城的氫鍵 化學鍵中的小矮人. Chemistry, 2004. 62: p. 43-58.
43. Gandhiraman, R., et al., Deposition of chemically reactive and repellent sites on biosensor chips for reduced non-specific binding. Colloids and surfaces B: Biointerfaces, 2010. 79(1): p. 270-275.
44. Abbas, A., et al., Preparation and multi‐characterization of plasma polymerized allylamine films. Plasma Processes and Polymers, 2009. 6(9): p. 593-604.
45. Borris, J., et al., Investigations into Composition and Structure of DBD‐Deposited Amino Group Containing Polymer Layers. Plasma Processes and Polymers, 2007. 4(S1).
46. Tarasova, A., et al., Colloid Probe AFM and XPS Study of Time‐Dependent Aging of Amine Plasma Polymer Coatings in Aqueous Media. Plasma Processes and Polymers, 2008. 5(2): p. 175-185.
47. Graf, N., et al., XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces. Surface Science, 2009. 603(18): p. 2849-2860.
48. Maurau, R., et al., Nitrogen Introduction in pp‐HMDSO Thin Films Deposited by Atmospheric Pressure Dielectric Barrier Discharge: An XPS Study. Plasma Processes and Polymers, 2012. 9(3): p. 316-323.
49. Siow, K.S., et al., Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization‐A Review. Plasma processes and polymers, 2006. 3(6‐7): p. 392-418.
50. Holländer, A., S. Kröpke, and F. Pippig, Chemical analysis of functionalized polymer surfaces. Surface and Interface Analysis, 2008. 40(3‐4): p. 379-385.
51. Ruiz, J.C., et al., Fabrication and Characterisation of Amine‐Rich Organic Thin Films: Focus on Stability. Plasma Processes and Polymers, 2010. 7(9‐10): p. 737-753.
52. Alexander, M.R., et al., A study of HMDSO/O 2 plasma deposits using a high-sensitivity and-energy resolution XPS instrument: curve fitting of the Si 2p core level. Applied Surface Science, 1999. 137(1): p. 179-183.
指導教授 郭倩丞、詹佳樺 審核日期 2017-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明