博碩士論文 93222002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.145.23.123
姓名 溫文華(Wen-Hua Wen)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100))
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces
★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長★ 在氧化鋁上成長金與白金的和金奈米粒子
★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究
★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應
★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象★ 在氧化鋁上成長碳六十薄膜及在氧化鋁上成長金-白金合金團簇並曝上甲醇
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 白金的奈米團簇利用蒸鍍的方法成長在氧化薄膜Al2O3/NiAl(100)上,利用高能電子繞射儀(Reflection High Energy Electron Diffraction)、掃描穿遂式顯微鏡(Scanning Tunneling Microscopy)和歐傑電子能譜儀(Auger Electron Spectroscopy)來研究之。我們發現白金奈米團簇(平均直徑2.25nm、高0.4nm)有很好的排列行為而且它們的結構和相位受到底層氧化物的影響。經由高能電子繞射儀的結構研究,我們發現白金團簇是fcc的結構並且沿著平行NiAl(100)表面的白金團簇的(100)面方向成長。其白金的[0-1-1]方向平行於NiAl(100)的[0-10]方向。這是個理想的成長方式,白金團簇(100)面和表面的氧化物矩形網狀結構互相吻合。白金團簇的晶格常數相對於fcc結構的白金塊材膨脹了約5%,這樣會使白金團簇的(100)面有比較好的晶格去吻合表面的氧化物。
另外白金奈米團簇的電催化性質如甲醇氧化性質(methanol oxidation)和其特性可以用循環伏安法(cyclic voltammetry)、高能電子繞射儀、掃描式電子顯微鏡(SEM)和歐傑電子能譜儀來研究。我們發現白金團簇在CV實驗後會聚成更大的團簇。結果顯示聚集的奈米團簇的直徑約15~30nm,其結構依然為fcc結構但其(111)面有個隨機的方向相對於表面的氧化物。
摘要(英) The Pt nanoclusters grown from vapour deposition on thin film Al2O3/NiAl(100)
have been studied by reflection high energy electron diffraction (RHEED), scanning
tunnelling microscopy (STM), and Auger electron spectroscopy (AES). The results
show that the Pt nanoclusters (with a mean diameter of 2.25 nm and height of 0.4 nm)
are highly crystalline and their structures and phases are significantly affected by the
oxide substrate. Structural analysis based on the RHEED patterns indicates that Pt
clusters, although with different sizes, have an fcc phase and grow with their (001)
facets parallel to the NiAl(100) surface, and with [110] axis along the [0-10] direction
of the bulk NiAl(100). It is an optimal growth as the Pt fcc (001) facets match better
with the rectangular oxygen mesh of the oxide surface. The lattice constant of the Pt
clusters is expanded by about 5 % (4.12 Å) relative to that of fcc bulk Pt (3.92Å), as
the Pt fcc (001) plane has better lattice match with the oxide surface.
The electro-catalytic properties of the Pt/Al2O3/NiAl(100) electrode for methanol
oxidation and its kinetic characterization were investigated by cyclic voltammetry
(CV), RHEED, AES and scanning electron microscopy (SEM). We observed
excellent electro-catalytic activity. The Pt nanoclusters have been sintered under the
CV conditions. The result exhibits that the aggregated size of Pt nanoclusters is ca.
15~30nm in diameter. The structures of the aggregated Pt nanoclusters have also an
fcc phase but have their (111) plane randomly oriented with respect to the oxide
surface.
關鍵字(中) ★ 白金奈米團簇 關鍵字(英) ★ atomic structures
★ electro-catalytic
論文目次 Chapter 1 Introduction …………………………………………………1
Reference………………………………………………4
Chapter 2 Literature Survey……………………………………………5
2.1 Fuel Cell………………………………………………5
2.2 NiAl Crystal……………………………………………6
2.3 Aluminum Oxide………………………………………7
2.4 Characterization of Pt nanoclusters……………………9
Reference…………………………………………13
Chapter 3 Theoretical Background……………………………………14
3.1 UHV system …………………………………………14
3.2 Surface Science Techniques …………………………16
3.2.1 Auger electron spectrum (AES) ……………16
3.2.2 Low energy electron diffraction (LEED) …19
3.2.3 Reflection High Energy Electron Diffraction (RHEED)……………………23
3.2.4 Scanning Tunneling Microscopy (STM)…….27
3.2.5 Scanning Electron Microscope (SEM)………29
3.3 Principles and methods of electrochemistry …………31
3.3.1 Introduction of Electrochemistry …………31
3.3.2 Electrochemical Reaction System …………32
3.3.3 Cyclic Voltammetry (CV)…………………33
3.4 Preparation of Works …………………………………34
3.4.1 Sample Cleaning ……………………………34
3.4.2 Oxygen Exposure ……………………………37
3.4.3 Deposition Process …………………………39
3.4.4 CV process …………………………………39
Reference……………………………………………41
Chapter 4 Result and Discussion ………………………………………42
4.1 Pt nanoclusters deposition on Al2O3/NiAl(100) ………42
4.2 CV study on the Pt/Al2O3/NiAl(100) electrode ………52
4.3 The atomic structure of aggregated Pt
Nanoclusters after CV processes ……………66
Reference…………………………………………75
Chapter 5 Conclusion………………………………………………76
參考文獻 [2] R. E. Palmer, New Sci. 2070, 38 (1996).
[3] M. Bäumer and H. J. Freund, Prog. Surf. Sci. 61, 127 (1999).
[4] G. P. Lopinski, V. I. Merkulov and J. S. Lannin, Phys. Rev. Lett. 80, 4241 (1998).
[5] C. R. Henry, Surf. Sci. Rep. 31, 231 (1998).
[6] J. Shi, S. Gider, K. Babcock and D. D. Awschalom, Science 271, 937 (1996).
[7] P. Gambardella, S. Rusponi, M. Veronese, S. S. Dhesi, C. Grazioli, A. Dallmeyer, I.
Cabria, R. Zeller, P. H. Dederichs, K. Kern, C. Carbone and H. Brune, Science 300,
1130 (2003).
[8] M. Haruta, Catal. Today 36, 153 (1997).
[9] M. Valden, X. Lai and D. W. Goodman, Science 281, 1647 (1998).
[10] T. Kizuka and N. Tanaka, Phys. Rev. B 56, R10079 (1997).
[11] K. H. Hansen, T. Worren, S. Stempel, E. Lægagaard, M. Bäumer, H.-J. Freund, F.
Besenbacher and I. Stensgaard, Phys. Rev. Lett. 83, 4120 (1999).
[12] O. Dulub, W. Hebenstreit and U. Diebold, Phys. Rev. Lett. 84, 3646 (2000).
[13] B. Pauwels, G. Van Tendeloo, E. Zhurkin, M. Hou, G. Verschoren, L. Theil Kuhn,
W. Bouwen and P. Lievens, Phys. Rev. B 63, 165406 (2001)
[14] Sh. K. Shaikhutdinov, R. Meyer, D. Lahav, M. Bäumer, H.-J. Freund, Phys. Rev.
Lett. 91, 076102 (2003).
[15] W. Vielstich, Fuel Cells, Wiley Interscience, Bristol, 1965.
[16] M.W. Breiter, Electrochemical Processes in Fuel Cells, Springer- Verlag, Berlin,
1969.
[17] O.A. Petrii, B.I. Podlovchenko, A.N. Frumkin, H. Lal, J. Electroanal. Chem. 10
(1965) 253.
[18] V.S. Bagotzki, Y. Vassileiv, Electrochim. Acta 12 (1967) 1323.
[19] M. Breiter, Electrochim. Acta 12 (1967) 1213.
[20] M. Valden, X. Lai, D. W. Goodman, Science 281, 1647 (1998).
[21] M. Haruta, Catal. Today 36, 153 (1997).
[22] Masatake Haruta, Catalysis Today 36 (1997) 153-166
[23] P. Wynblatt, N. A. Gjostein, in Progess in Solid State Chemistry, J. O. McCaldin,
G. A. Somorjai, Eds. (Elsevier Science, Amsterdam, 1975), vol. 9, pp. 21– 58
[24] P. Wynblatt, N. A. Gjostein, Acta Metall. 24, 1165 (1976).
[25] C. T. Campbell, Surf. Sci. Rep. 27, 1 (1997).
[26] J. V. Zoval, J. Lee, S. Gorer, and R. M. Penner*, J. Phys. Chem. B 1998, 102,
1166-1175
[1] James Larminie , Andrew Dicks, Fuel Cell Systems Explained second edition.
[2] Ralf-Peter Blum *, Dirk Ahlbehrendt, Horst Niehus, Surface Science 366 (1996)
107-120
[3] Rene Franchy, Surface Science Reports 38 (2000) 195-294
[4] R.-P. Blum, H. Niehus, Appl. Phys. A 66, S529–S533 (1998)
[5] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319(1994)95-109
[6] R. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 396 (1998) 176.
[7] M. Ba umer, H.J. Freund, Prog. Surf. ‥ Sci. 61 (1999) 127.
[8] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (2006)
1942-1951
[9] Jeff Greeley and Manos Mavrikakis, J. AM. CHEM. SOC., 124 (2002) 7193-7201
[10] Hamnett, A. Catal. Today 1997, 38, 445-457.
[11] Williams, K. R.; Burstein, T. Catal. Today 1997, 38, 401-410.
[12] Burstein, G. T.; Barnett, C. J.; Kucernak, A. R.; Williams, K. R. Catal. Today
1997, 38, 425-437.
[13] Th. Bertrams, F. Winkelmann, Th. Uttich, H-J Freund, H. Neddermeyer, Surf.
Sci. 331-333(1995)1515-1519
[14] Charles T. Campbell, Stephen C. Parker, David E. Starr, SCIENCE VOL 298 25
OCTOBER 2002
[15] P. Wynblatt, N. A. Gjostein, Acta Metall. 24, 1165 (1976).
[16] C. T. Campbell, Surf. Sci. Rep. 227, 1 (1997).
[17] Debra R. Rolison, SCIENCE, 299 (2003)1698-1701
[18] J. V. Zoval, J. Lee, S. Gorer, and R. M. Penner, J. Phys. Chem. B 1998, 102,
1166-1175
[1] F. Jona, J.A. Strozier, Jr., W.S. Young: Rep. Prog. Phys. 45 , 527 (1982)
[2] N.W. Ashcroft and N.D. Mermin, Solid State Physics, Saunders (1976).
[3] J.E. Mahan, K.M. Geib, G. Y. Robinson, and R. G. Long, J. Vac. Sci. Technol. A
8, 3692(1990).
[4] H.S. Nalwa editor, Experimental Methods in the Physics Sciences– Volume 38:
Advances in Surface Science, Academic Press (2001).
[5] Gary Attard, Colin Barnes, Surface.
[6] G. Lehmpfuhl, Y. Uchida, M.S. Zei, D.M. Kolb, in: J. Lipkowski, P.N. Ross
(Eds.), Imaging of Surfaces and Interfaces; Frontiers of Electrochemistry, vol. 5,
Wiley-VCH, Weinheim, Germany, 1999, p.57.
[1] Debra R. Rolison, SCIENCE, 299 (2003)1698-1701
[2] M. Klimenkov, S. Nepijko, H. Kuhlenbeck, M. Bäumer, R. Schlögl and H.-J.
Freund, Surf. Sci. 391, 27 (1997).
[2] A. L. N. Pinheiro, M. S. Zei, D. Ertl, Phys. Chem. Chem. Phys, 7 (2005)
1300-1309
[4] Th. Bertrams, F. Winkelmann, Th. Uttich, H-J Freund, H. Neddermeyer, Surf. Sci.
331-333(1995)1515-1519
[5] J. V. Zoval, J. Lee, S. Gorer, and R. M. Penner, J. Phys. Chem. B 1998, 102,
1166-1175
[6] P. Gassmann, R. Franchy and H. Ibach, Surf. Sci. 319, 95 (1994)
[7] N. Frémy, V. Maurice, and P. Marcus, J. Am. Ceram. Soc. 86, 669 (2003).
[8] V. Maurice, N. Frèmy and P. Marcus, Surf. Sci. 581, 88 (2005).
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2006-10-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明