博碩士論文 100622018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.16.66.206
姓名 王秀雅(Shiou-Ya Wang)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 應用海底地震儀研究台灣西南海域海床噴氣現象與台灣東北部外海孕震構造
(Application of Ocean Bottom Seismometer on studying the seabed gas emissions phenomenon off SW Taiwan and the Seismotectonics off NE Taiwan)
相關論文
★ 台灣基隆外海近海床地質構造與噴氣現象的探討★ 南海北部地殼構造與深海沈積物波之研究
★ 西菲律賓海盆西部的海床構造分析★ 南海北坡高解析水深調查與淺層地質的構造分析
★ 南海北部之磁力異常特徵分析★ 利用底質剖面儀及EK60聲納資料研究台灣北部近海的可能活動構造
★ 台灣恆春半島南部海域海底地形及構造研究★ 南海東北部海洋地殼構造之研究
★ 台灣地區岩石圈之浮力與重力位能的探討★ 以地震層析法推求台灣北部地區的速度構造並探討流體的可能分佈
★ 聯合尤拉解迴旋與解析訊號法求取磁源參數之研究★ 南海最北部地磁與地形之研究
★ 班達海岩心MD012380之磁學研究: 80萬年來赤道暖池區之古環境變遷★ 台灣至呂宋島間馬尼拉海溝的震測研究: 從正常隱沒到初期碰撞抬昇的上部地殼構造
★ 利用接收函數法分析台灣深部地殼構造★ 板塊邊界地震引起之重力位能變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣造山帶座落於歐亞板塊與菲律賓海板塊聚合區域,探討台灣及其周圍地體構造除了需在台灣島上進行各類的地質和地球物理調查及分析外,也需要調查台灣周圍海域的地體構造,如此才能夠完整解釋台灣區域的複雜構造。因為台灣位於板塊交界處,地體構造活動相當活躍,地震頻繁,雖然台灣島上有較完整且密集的陸上地震觀測網,但陸上地震觀測網並無法覆蓋海域地震,因此必須藉由海底地震儀(Ocean Bottom Seismometer, OBS)的佈放,才能觀察到陸上不易偵測的較小規模地震或微震活動。本論文即以此觀點出發,期盼能結合海域的研究,透過臨時海底地震儀觀測網所收集之資料進行局部的台灣周遭地震之相關研究和分析。
本論文第一個研究主題為分析台灣西南部外海因海床天然噴氣而誘發的微震訊號,了解海底氣體噴發的可能機制。台灣西南部海域有常見的泥貫入體與海底泥火山地質構造,相關的海床噴氣現象在該區域普遍可以被觀測到。因此藉由海底地震儀所組成的臨時觀測網在泥火山MV1與周圍區域持續地記錄22天,我們從每個測站的波形紀錄中,可明顯辨識脈衝微震與長時微震兩個訊號,前者震動時間僅2~3秒短,後者則因與脈衝微震有相似的單頻震盪特徵而被視為是脈衝微震疊加而成。我們推論出海床噴氣活動與其誘發的微震訊號與潮汐的漲退活動相關,其中又以半日潮與全日潮最為明顯。劇烈的噴氣活動與伴隨的長時微震通常出現在潮汐上升至最高高潮與下降至最低低潮期間,而在接近平潮時期時,兩者活動度接明顯下降。整體而言,噴氣活動和微震振幅與每個潮汐日內潮差呈正比,相關性越高暗示在測站下方的淺部沉積層中的氣體含量越高。
本論文第二個研究主題則為探討台灣東北部和平海盆至南澳海盆地區的孕震構造。影響台灣地區的地震有將近百分之七十分布在台灣陸上地震站網以外的海域,然受限於東部外海地震測站包覆度不足,造成地震定位上有一定的誤差,增加解析東部外海複雜構造的難度。2015年4月20日,在南澳海盆發生了規模Mw 6.3的地震,我們隨即在震央附近佈放6顆海底地震儀並收集近15天的地震資料。配合8個陸上地震站組成臨時觀測網,期間共有501個地震事件被使用HypoDD重新定位。定位結果顯示震源深度集中在17至35公里間。研究區域之地震依據震源機制可分為兩種截然不同型態:一是屬實板塊介面地震帶之地震,屬逆斷層型態的地震活動,深度落於20-30公里左右,震央分布呈西北-東南向,深度往北漸增,此地震群與琉球隱沒系統有關,特色為低角度之逆衝斷層:二是屬於和平群震淺部地震,屬正斷層型態之地震活動,其分布沿著高角度南傾的斷層面,自南澳海盆下方之低速帶向上延伸,其主因可能是位於南澳海盆東南與西北兩側之右移橫移斷層造成此區域局部擠壓應力,使得隱沒中的菲律賓海板塊受到擠壓而突起,在在突起構造上方則誘使上覆的弧前地層陷落造成一系列的正斷層。
摘要(英)
The Taiwan mountain belt belongs to a collision zone, located between the Eurasian plate (EP) and the Philippines Sea Plate (PSP). In such a complex tectonic regime, lots of seismic activities are expected. However, due to the limitation of the onland seismic stations, the seismotetonics setting of the related offshore area is usually not well understood. In order to better understand the tectonics of the offshore area, we have combined the Ocean bottom Seismometer (OBS) and the onland seismic stations. Different from the onland station, OBS data can record micro-earthquakes and tremors that are outside the range of the onland seismometers. The joint use of the OBS and the onland seismic stations can help understand detailed structures in the offshore area of Taiwan.
The first topic of this dissertation is to understand the mechanism of gas emission off SW Taiwan. The area off SW Taiwan belongs to an incipient stage of orogeny and consists in numerous active mud diapirs and mud volcanoes. Gas emissions out of the seabed off SW Taiwan are a common phenomenon. However, the mechanism of gas emissions is still poorly understood. For that, we collect the gas-related impulse tremor and long-duration tremor by using OBS around mud volcano MV1. We show that the gas emissions out of the seabed and the associated tremors off SW Taiwan are strongly correlated with the ocean tides, especially with the diurnal and semidiurnal constituents. For each tidal day the strong gas emissions and long-duration tremors occur mainly at the rising periods to the higher high water and the falling periods to the lower low water. Both the gas emissions and tremor activities are generally quiet near the tidal datum. On average, the daily intensity of gas emissions and the magnitude of tremors are positively proportional to the daily tidal range; we suggest that the larger slope site has a greater gas concentration in the shallow sediments.
In the second topic, we address the seismotetonics of Nanao-Hoping forearc basin off NE Taiwan. In the Taiwan area, over 70 percent of the earthquakes occurred in the offshore area. Based only on the onland seismic network, the observation and monitoring of those earthquakes are apparently insufficient. In order to better understand the nature of the seismic behavior in that region, 6 OBS were deployed around the Nanao basin immediately after the Mw 6.3 earthquake on April 20, 2015. We have combined the recorded OBS data with 8 CWB onland stations for a detailed earthquake analysis. In total, 501 earthquakes have been relocated by using HypoDD. The distribution of relocated hypocenters shows a NW-SE (NE-SW??) trending and the focal depths range from 15 to 35 km. The earthquake locations display two major features: (1) A group of events at depths between 20 and 30 km beneath Nanao Basin is aligned with the subduction interface. We consider that this group belongs to subduction earthquakes, because the earthquakes cluster in the vicinity of the expected subduction interface. (2) Another seismicity is beneath the NW Nanao Basin and Hoping Rise and shows a high-angle south-dipping structure. We suggest the feature is associated with normal faults. Two parallel right-lateral transform faults on Hoping Basins and Ryukyu accretionary prism (Yaeyama fault) could cause a transpressional stress and induced a local deformation on subducting PSP slab. The subducting PSP is therefore locally arching, which has generates a series of normal faults on the NW Nanao basin and Hoping Rise. 
關鍵字(中) ★ 海底地震儀
★ 海床噴氣
★ 孕震構造
關鍵字(英) ★ OBS
★ gas emission
★ Seismotectonics
論文目次 摘 要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 x
第一章、緒論 1
1.1前言 1
1.2研究動機與目的 2
1.3本文內容 3
第二章、海底地震儀 8
2.1 前言 8
2.2 海底地震儀 8
第三章、台灣西南海域海床氣體噴發機制 16
3.1 前言 16
3.2 西南海域地質背景與調查概況 16
3.2.1研究區域地質背景 16
3.2.2 台灣西南海域之天然氣水合物賦存潛能 17
3.2.3 泥火山與海床噴氣現象 17
3.2.4 台灣西南外海潮汐特性 19
3.3研究資料收集與處理 30
3.3.1 海底地震儀資料收集 30
3.3.2科學魚探儀系統與資料收集 30
3.3.3 潮汐資料 31
3.4結果 34
3.4.1泥火山MV1噴氣機制 34
3.4.2微震活動 35
3.4.3 潮差與微震振幅 37
3.4.4 微震與潮汐分潮 37
3.5討論 50
3.5.1 甲烷氣體噴發機制 50
3.5.2 沉積物中氣體蘊藏量 51
3.5.3 微震震源位置 52
3.5.4 甲烷氣體逸出與影響 52
3.6結論 56
第四章、台灣東北海域琉球隱沒帶的地震地體構造 57
4.1 前言 57
4.2 台灣東北部海域構造環境與地震活動 57
4.2.1台灣東北部外海的地體構造 57
4.2.2 台灣東北部外海的地震特性 59
4.3資料處理方法與收集 68
4.3.1 海底地震儀重定位 68
4.3.2 地震波到時挑選與初步定位 68
4.3.3 地震重新定位 69
4.3.4 地震規模 71
4.3.5資料收集 72
4.4資料處理與結果 76
4.4.1 海底地震儀位置校正 76
4.4.2地震定位結果 76
4.4.3 地震規模 78
4.4.4震源機制解 78
4.5 討論 88
4.5.1 板塊介面地震群 88
4.5.2 和平地震群 89
4.5.3 海域觀測網優點 91
4.6 結論 99
第五章、總結 100
參考文獻 102
參考文獻

Boles, J. R., Clark, J. F., Leifer, I., & Washburn, L., (2001). Temporal variation in natural methane seep rate due to tides, Coal Oil Point area, California. Journal of Geophysical Research, 106, 27077-27086.
Chand, S., & Minsull, T. A., (2003). Seismic constraints on the effects of gas hydrate on sedimentphysical properties and fluid flow: a review. Geofluids, 3, 275-289.
Chang, C.-P., Angelier, J., & Huang, C.-Y., (2000). Origin and evolution of a melange: the active plate boundary and suture zone of the Longitudinal Valley. Tectonophysics, 325(1-2), 43-62.
Chen, S.-C., Hsu, S.-K., Tsai, C.-H., Ku, C.-Y., Yeh, Y.-C., & Wang, Y., (2010). Gas seepage, pockmarks and mud volcanoes in the near shore of SW Taiwan. Marine Geophysical Researches, 31, 133-147.
Chen, S.-C., Hsu, S.-K., Wang, Y., Chung, S.-H., Chen, P.-C., Tsai, C.-H., et al., (2014). Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. Journal of Asian Earth Sciences, 92, 201-214.
Chuang, P.-C., Yang, T. F., Hong, W.-L., Lin, S., Sun, C.-H., Lin, A. T., et al., (2010). Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation. Geofluids, 10, 497-510.
Custodio, S. I. S., Fonseca, J. F. B. D., d’Oreye, N. F., Faria, B. V. E., & Bandomo, Z., (2003). Tidal modulation of seismic noise and volcanic tremor. Geophys. Res. Lett, 30(15), 1816.
Dimitrov, L. I., (2002). Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 59(1-4), 49-76.
Dimitrov, L. I., (2003). Mud volcanoes - a significant source of atmospheric methane. Geo-Mar. Lett., 23(3), 155-161.
Dominguez, S., Lallemand, S., & Malavieille, J., (1998). Oblique subduction of the Gagua Ridge beneath the Ryukyu accretionary wedge system: Insights from marine observations and sandbox experiments. Marine Geophysical Researches, 20(5), 383-402.
Etiope, G., & Klusman, R. W., (2002). Geologic emissions of methane to the atmosphere. Chemospher, 49, 777-789.
Font, Y., Kao, H., Lallemand, S., Liu, C.-S., & Chiao, L.-Y., (2004). Hypocentre determination offshore of eastern Taiwan using the Maximum Intersection method. Geophys. J. Int., 158(2), 655-675.
Font, Y., & Lallemand, S., (2009). Subducting oceanic high causes compressional faulting in southernmost Ryukyu forearc as revealed by hypocentral determinations of earthquakes and reflection/refraction seismic data. Tectonophysics, 466, 255-267.
Font, Y., Liu, C.-S., Schnurle, P., & Lallemand, S., (2001). Constraints on backstop geometry of the Southwest Ryukyu subduction based on reflection seismic data. Tectonophysics, 2001, 135-158.
Hsu, S.-K., Kuo, J., Lo, C.-L., Tsai, C.-H., Doo, W.-B., Ku, C.-Y., et al., (2008). Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan. Terr. Atmos. Ocean. Sci., 19(6), 767.
Hsu, S.-K., Lin, S.-S., Wang, S.-Y., Tsai, C.-H., Doo, W.-B., Chen, S.-C., et al., (2016). Seabed Gas Emissions and Submarine Landslides off SW Taiwan. Terr. Atmos. Ocean. Sci., In press,
Hsu, S.-K., Wang, S.-Y., Liao, Y.-C., Yang, T. F., Jan, S., Lin, J.-Y., et al., (2013). Tide-modulated gas emissions and tremors off SW Taiwan. Earth Planet. Sci. Lett., 369-370, 98-107.
Hu, C.-K., Chiu, C.-T., Chen, S.-H., Kuo, J.-Y., Jan, S., & Tseng, Y.-H., (2010). Numerical simulation of barotropic tides around Taiwan. Terr. Atmos. Ocean. Sci., 21(1), 71-84.
Huang, H.-H., Shyu, J. B. H., Wu, Y.-M., Chang, C.-H., & Chen, Y.-G., (2012). Seismotectonics of northeastern Taiwan: Kinematics of the transition from waning collision to subduction and postcollisional extension. Journal of Geophysical Research, 117(B1), B01313.
Institute of Earth Sciences, A. S., Taiwan, (1996). Broadband Array in Taiwan for Seismology. Institute of Earth Sciences, Academia Sinica, Taiwan. Other/Seismic Network. doi:10.7914/SN/TW
IPCC, Changes in Atmospheric Constituentsand in Radiative Forcing, Cambridge, UK: Cambridge University, 2007.
Judd, A., & Hovland, M., Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment, Cambridge, Cambridge University Press, 2007.
Judd, A. G., (2003). The global importance and context of methane escape from the seabed. Geo-Mar. Lett., 23, 147-154.
Kanamori, H., Rivera, L., & Lee, W. H. K., (2010). Historical seismograms for unravelling a mysterious earthquake: The 1907 Sumatra earthquake. Geophys. J. Int., 183, 358-374.
Kao, H., Shen, S.-s. J., & Ma, K.-F., (1998). Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region. Journal of Geophysical Research, 103(B4), 7211-7229.
Kasahara, J., (2002). Tides, earthquakes, and volcanoes. Science, 297(5580), 348-349.
Kennett, B. L. N., & Engdahl, E. R., (1991). Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105(2), 429-465.
Konstantinou, K. I., Lee, S.-J., Font, Y., & Kao, H., (2011). Rupture at the flank of the subducted Gagua ridge: The 18 December 2001 earthquake (Mw 6.8) offshore eastern Taiwan. Physics of the Earth and Planetary Interiors, 189(1-2), 80-91.
Kopf, A., Robertson, A. H. F., & Volkmann, N., (2000). Origin of mud breccia from the Mediterranean Ridge accretionary complex based on evidence of the maturity of organic matter and related petrographic and regional tectonic evidence. Marine Geophysical Researches, 166(1-4), 65-82.
Kopf, A. J., (2002). Significance of mud volcanism. Review of Geophysics, 40(2), 1-52.
Lallemand, S., & Liu, C.-S., (1998). Geodynamic implications of present-day kinematics in the southern Ryukyus. Journal of the Geological Society of China, 41(4), 551-564.
Lallemand, S., Liu, C.-S., Dominguez, S., Schnürle, P., & Malavieille, J., (1999). Trench-parallel stretching and folding of forearc basins and lateral migration of the accretionary wedge in the southern Ryukyus: A case of strain partition caused by oblique convergence. Tectonophysics, 18(2), 231-249.
Lallemand, S., Theunissen, T., Schnürle, P., Lee, C.-S., Liu, C.-S., & Font, Y., (2013). Indentation of the Philippine Sea plate by the Eurasia plate in Taiwan: Details from recent marine seismological experiments. Tectonophysics, 594, 60-79.
Lallemand, S. E., Liu, C.-S., & Font, Y., (1997). A tear fault boundary between the Taiwan orogen and the Ryukyu subduction zone Tectonophysics, 274, 171-190.
Lambert, A., Kao, H., Rogers, G., & Courtier, N., (2009). Correlation of tremor activity with tidal stress in the northern Cascadia subduction zone. Journal of Geophysical Research, 114, B00A08.
Lay, T., Ammon, C. J., Kanamori, H., Rivera, L., Koper, K. D., & Hutko, A. R., (2010). The 2009 Samoa–Tonga great earthquake triggered doublet. Nature, 466, 964-968.
Lim, Y. C., Lin, S., Yang, T. F., Chen, Y.-G., & Liu, C.-S., (2011). Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan. Mar. Petrol. Geol., 28, 1829-1837.
Limonov, A. F., Woodside, J. M., Cita, M. B., & Ivanov, M. K., (1996). The Mediterranean Ridge and related mud diapirism: a background. Marine Geology, 132, 7-19.
Lin, A. T., Liu, C.-S., Lin, C.-C., Schnurle, P., Chen, G.-Y., Liao, W.-Z., et al., (2008). Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan. Marine Geology, 255, 186-203.
Lin, A. T., Yao, B., Hsu, S.-K., Liu, C.-S., & Huang, C.-Y., (2009). Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479, 28-42.
Liu, C.-S., Deffontaines, B., Lu, C.-Y., & Lallemand, S., (2004). Deformation patterns of an accretionary wedge in the transition zone from subduction to collision offshore southwestern Taiwan. Marine Geophysical Researches, 25(1), 123-137.
Liu, C.-S., Huang, I. L., & Teng, L. S., (1997). Structure features off southwestern Taiwan. Marine Geology, 137(3-4), 305-319.
Liu, C.-S., Schiturle, P., Lallemand, S., & Reed, D. L., (1997). TAICRUST and Deep Seismic Imaging of Western End of the Ryukyu Arc-Trench System. JAMSTEC J. Deep Sea Res., 39-45,
Liu, C.-S., Schnürle, P., Wang, Y.-s., Chung, S.-H., Chen, S.-C., & Hsiuan, T.-H., (2006). Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terr. Atmos. Ocean. Sci., 17(4), 615-644.
Milkov, A. V., (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, 167(1-2),
Nakata, R., Suda, N., & Tsuruoka, H., (2008). Non-volcanic tremor resulting from the combined effect of Earth tides and slow slip events. Nature Geoscience, 1, 676-678.
Rau, R.-J., & Wu, F. T., (1995). Tomographic imaging of lithospheric structures under Taiwan. Earth Planet. Sci. Lett., 133, 517-532.
Reed, D. L., Lundberg, N., Liu, C.-S., & Kuo, B.-Y., (1992). Structural relations along the margins of the offshore Taiwan accretionary wedge: implications for accretion and crustal kinematics. Acta Geological Taiwanica, 30, 105-122.
Rubinstein, J. L., Rocca, M. L., Vidale, J. E., Creager, K. C., & Wech, A. G., (2008). Tidal Modulation of Nonvolcanic Tremor. Science, 319(5860), 186-189.
Schnürle, P., Liu, C.-S., Lallemand, S. E., & Reed, D. L., (1998). Structural insight into the south Ryukyu margin: effects of the subducting Gagua Ridge. Tectonophysics, 288(1-4), 237-250.
Sella, G. F., Dixon, T. H., & Mao, A., (2002). REVEL: A model for Recent plate velocities from space geodesy. Journal of Geophysical Research, 107(B4),
Seno, T., Stein, S., & Gripp, A. E., (1993). A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. Journal of Geophysical Research, 98(B10), 17941-17948.
Shelly, D. R., Beroza, G. C., & Ide, S., (2007). Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan. Geochem. Geophys. Geosyst., 8, Q10014.
Shin, T.-C., (1993). The Calculation of Local Magnitude from the simulated Wood-Anderson Seismograms of the Short-Period Seismograms in the Taiwan Area. Terr. Atmos. Ocean. Sci., 4(2), 155-170.
Simons, M., Minson, S. E., Sladen, A., Ortega, F., Jiang, J., Owen, S. E., et al., (2011). The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries. Science, 332(6036), 1421-1425.
Sloan, E. D., Physical/chemical properties of gas hydrates and application to world margin stability and climatic change. In: Gas hydrates: relevance to world margin stability and climate change, London, Geological Society, 1998.
Talukder, A. R., ⁎, J. B., Buerk, D. K., Brueckmann, W., Reston, T., & Breitzke, M., (2007). High-resolution, deep tow, multichannel seismic and sidescan sonar survey of the submarine mounds and associated BSR off Nicaragua pacific margin. Marine Geology, 241, 33-43.
Tary, J. B., G´eli, L., Guennou, C., Henry, P., Sultan, N., a˘gatay, N. C., et al., (2012). Microevents produced by gas migration and expulsion at the seabed: a study based on sea bottom recordings from the Sea of Marmara. Geophys. J. Int., 190, 993-1007.
Theunissen, T., Font, Y., Lallemand, S., & Liang, W.-T., (2010). The largest instrumentally recorded earthquake in Taiwan: revised location and magnitude, and tectonic significance of the 1920 event. Geophys. J. Int., 183, 1119-1133.
Theunissen, T., Lallemand, S., Font, Y., Gautiera, S., Lee, C.-S., Liang, W.-T., et al., (2012). Crustal deformation at the southernmost part of the Ryukyu subduction (East Taiwan) as revealed by new marine seismic experiments. Tectonophysics, 578, 10-30.
Thomas, A. M., Nadeau, R. M., & Bürgmann, R., (2009). Tremor–tide correlations and near-lithostatic pore pressure on the deep San Andreas Fault. Nature, 462, 1048-1051.
Tolstoy, M., Vernon, F. L., Orcutt, J. A., & Wyatt, F. K., (2002). Breathing of the seafloor: tidal correlations of seismicity at Axial volcano. Geology, 30, 503-506.
Torres, M. E., McManus, J., Hammond, D. E., Angelis, M. A. d., Heeschen, K. U., Colbert, S. L., et al., (2002). Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I: Hydrological provinces. Earth Planet. Sci. Lett., 201, 525-540.
Trnkoczy, A., (1998). Understanding and setting sta/lta trigger algorithm parameters for the k2. Application Note, 41, 16-20.
Waldhauser, F., & Ellsworth, W. L., (2000). A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. B. Seismo. Soc. Am., 90(6), 1353-1368.
Wessel, P., & Smith, W. H. F., (1998). New, improved version of the Generic Mapping Tools released. EOS, 79, 579.
Wu, F. T., Rau, R.-J., & Salzberg, D., (1997). Taiwan orogeny: thin-skinned or lithospheric collision? Tectonophysics, 274(1-3), 191-220.
Yang, T. F., Chuang, P.-C., Lin, S., Chen, J.-C., Wang, Y., & Chung, S.-H., (2006). Methane venting in gas hydrate potential area offshore of SW Taiwan: evidence of gas analysis of water column samples. Terr. Atmos. Ocean. Sci., 17(4), 933-950.
Yu, S.-B., Chen, H.-Y., & Kuo, L.-C., (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59.
王雪芬,「台灣西南海域指標海脊之天然氣水合物賦存區地構造特徵」,國立中央大學,碩士論文 ,民國104年。
劉家瑄,天然氣水合物資源潛能調查:震測、地熱及地球化學調查 (3/4) 反射震測與海床聲納迴聲剖面調查研究。。第103-16-A。 台北, 經濟部中央地質調查所報告,2014。
指導教授 許樹坤(Shu-Kun Hsu) 審核日期 2017-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明