博碩士論文 103329013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:136 、訪客IP:3.129.195.206
姓名 呂庚陸(Geng-Lu Lu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 BaCe0.6Zr0.2Y0.2O3-δ/BaCe0.8Y0.2O3-δ/BaCe0.6Zr0.2Y0.2O3-δ保護層結構於固態氧化物燃料電池特性分析
(BaCe0.6Zr0.2Y0.2O3-δ/BaCe0.8Y0.2O3-δ/BaCe0.6Zr0.2Y0.2O3-δ protection structures applied in proton-conducting solid oxide fuel cell (P-SOFC))
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用BaCe0.6Zr0.2Y0.2O3-δ/BaCe0.8Y0.2O3-δ/BaCe0.6Zr0.2Y0.2O3-δ三明治結構(Sandwich structure)來保護中間層,此種電解質材料主要應用於質子傳導型固態氧化物燃料電池,利用固態反應法來製作BaCe0.8Y0.2O3-δ(BCY) 與BaCe0.6Zr0.2Y0.2O3-δ(BCZY) 粉末,再利用刮刀塗佈法做成個別電解質片,堆疊成所需結構後水壓與燒結成試片。藉由SEM、XRD來進行材料與結構分析。
用SEM觀察三個試片剖面,其中BCY、BCZY與三明治結構分別厚度為66.67um、68.63um、73.52um,且其剖面為緊密結構,。

第二部分用XRD來確認鈣鈦礦相,單相之鈣鈦礦立方晶結構,主要出現6個明顯的主峰訊號,分別為(110)、(200)、(211)、(220)、(310)和(222)(JCPDS #89-2485),並且沒有其他二次相訊號,因此燒結後所製備試片為單相之鈣鈦礦立方晶結構;接著在600℃ CO2氣氛下做毒化反應測其化學穩定性,BCY在持溫2小時即產生二次相,BCZY於16小時才產生微弱的二次相訊號,說明BCZY於三明治結構可以有效保護中間BCY層。

最後量測其電導率,在還未毒化前BCY、BCZY與三明治結構在800℃下分別為0.0027、0.0018與0.0026(S/cm),經過CO2 16小時後量測的電導率曲線,BCY電解質在化學穩定性表現時就比較差,電導率因二次相影響有顯著的下降(800℃,~0.0006S/cm),BCZY則因其化學穩定性佳,與毒化前一樣(800℃,~0.0018S/cm),Sandwich則略為下降,但因外層有BCZY保護,所以下降幅度有限(800℃,~0.0019S/cm),但因在量測時到接觸阻抗影響,其數值與理論數值有所差異。
摘要(英)
To protect proton-conducting solid oxide fuel cells (H+-SOFCs) from CO2 poisoning and to have basically ion conductivity, the sandwich structure of BaCe0.6Zr0.2Y0.2O3-δ/BaCe0.8Y0.2O3-δ/BaCe0.6Zr0.2Y0.2O3-δ was used in this study. BaCe0.8Y0.2O3-δ (BCY) and BaCe0.6Zr0.2Y0.2O3-δ (BCZY) powders were synthesized by solid-state reaction method (SSR). After sintering, BCY, BCZY and the sandwich samples were analyzed by scanning electron microscope (SEM), x-ray diffraction (XRD) and conductivity measurements.
The SEM images showed that the electrolytes were highly dense after sintering at 1550℃ for 12 hrs, indicating that the fuel leakage could be ignored. The thicknesses of BCY, BCZY and the sandwich structures were well controlled. The six main peaks (110), (200), (211), (220), (310), and (222) shown in the XRD patterns confirmed the perovskite phase. After poisoning treatment in CO2 atmosphere at 600℃, BCZY and the sandwich structure showed higher stability than that of BCY.
The conductivity of the sandwich structure (800℃,0.0026 S/cm) was found to locate between BCY (800℃,0.0027 S/cm) and BCZY (800℃,0.0018 S/cm). After poisoning treatment, the BCY conductive value obviously decreased (800℃,~0.0006S/cm) since the second phase hindered its ion transferring. The sandwich structure almost maintain its conductivity because its protection layers slowed down the pensioning process (800℃,~0.0019S/cm). However, all conductive values were smaller than the values in the previous study. It would be attributed to the contact resistances between electrolyte and metal contacts.
關鍵字(中) ★ 固態氧化物燃料電池
★ 電解質
★ 保護層
★ 三明治結構
關鍵字(英) ★ Solid oxide of fuel cells (SOFC)
★ Electrolyte
★ Protection layer
★ Sandwich structure
論文目次
摘要 i
Abstract ii
致謝 iiv
目錄 v
圖目錄 vii
表目錄 vii
前言 - 1 -
一. 緒論 - 2 -
1.1. 燃料電池之簡介[1.1]-[1.3] - 2 -
1.2. 固態氧化物燃料電池(SOFC) - 3 -
1.2.1. SOFC之原理[1.4-1.7] - 3 -
1.3.2. SOFC之優點 - 4 -
1.3.3. SOFC之缺點 - 5 -
1.3.4. SOFC之結構 - 5 -
1.3.5. SOFC電解質材料製備方式[1.19] - 6 -
1.4. SOFC電解質材料[1.27- 1.28] - 7 -
1.4.1. 螢石(Fluorite)結構 - 7 -
1.4.2. 鈣鈦礦(Perovskite)結構及性質 - 7 -
1.4.3. 質子傳輸機制 - 8 -
1.4.4. 質子傳輸型電解質 - 8 -
1.5. 三相界面(Three Phase Boundary, TPB) - 12 -
1.6. 研究動機 - 13 -
二. 實驗方法 - 14 -
2.1. 實驗藥品 - 14 -
2.2. 實驗儀器 - 14 -
2.2.1. X光繞射儀 - 14 -
2.2.2. 掃描式電子顯微鏡(Scanning Electron Microscopy) - 15 -
2.2.3. 行星式球磨機(Planetary milling) - 15 -
2.2.4. 滾筒式球磨機 - 15 -
2.2.5. 刮刀塗佈機Blade coating machine - 15 -
2.2.6. 電性分析「離子與電子傳輸速度」 - 16 -
2.2.7. 化學穩定性 - 16 -
2.3. 實驗方法與流程 - 17 -
2.3.1. BaCe0.6Zr0.2Y0.2O3-δ粉末製備 - 17 -
2.3.2. BaCe0.8Y0.2O3-δ粉末製備 - 17 -
2.3.3. 刮刀成型 - 18 -
2.3.4. 疊壓-共燒 - 18 -
三. 結果與討論 - 19 -
3.1. 材料分析 - 19 -
3.1.1. 形貌與結構分析 - 19 -
3.1.2. 化學熱穩定性分析 - 22 -
3.2. 電性分析 - 24 -
3.3. 結論 - 25 -
四. 參考文獻 - 26 -
參考文獻
[1.1] W.R. Grove, “On voltaic series and the combination of gases by
platinum”, Philosophical Magazine Series 3, 14 (1839)pp. 127-130.
[1.2] Grove, W. R., “Note sur une pile voltaïque d′une grande énergie,
construite par M. Grove; communication de M. Becquerel”, Comptes Rendus, Vol. 8, (1839)pp. 497
[1.3] Hoogers, G. (Ed.). “Fuel cell technology handbook. CRC press”. (2002).
[1.4] Badwal, S. P. S., et al. "Review of progress in high temperature solid oxide fuel cells." ChemInform 46.31 (2015).
[1.5] Bossell, U. “The birth of the Fuel Cell 1835–1845. In European Fuel Cell Forum”. (2000).
[1.6] 黃鎮江,「燃料電池」,全華科技圖書股份有限公司,2005
[1.7] Barbir, F. “PEM fuel cells: theory and practice. Academic Press”. (2012).
[1.8] M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, E. D. Bartolomeo, “Influence of the ratio between Ni and BaCe0.9Y0.1O3−δon microstructural andelectrical properties of proton conducting Ni–BaCe0.9Y0.1O3−δanodes”, Journal of Alloys and Compounds, 509 (2011) pp. 1157–1162.
[1.9] B. H. Rainwater, M.F. Liu, M.L. Liu, “A more efficient anode
microstructure for SOFCs based on proton conductors”, Journal of Hydrogen Energy, 37 (2012) pp. 18342-18348.
[1.10] T. Suzuki, S. Sugihara, T. Yamaguchi, H. Sumi, K. Hamamoto, Y. Fujishiro, “Effect of anode functional layer on energy efficiency of solid oxide fuel cells”, Electrochemistry Communications, 13(2011) pp. 959-962.
[1.11] L. Bi, S.Q. Zhang, S.M. Fang, Z.T. Tao, R.R. Peng, W. Liu, “A novel anode supported BaCe0.7Ta0.1Y0.2O3−δelectrolyte membrane for proton-conducting solid oxide fuel cell”, Electrochemistry Communications, 10 (2008) pp. 1598-1601.
[1.12] H. Moon, S. D. Kim, E. W. Park, S. H. Hyun, H. S. Kim,
“Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy, 33 (2008) pp. 2826-2833.
[1.13] Z.H. Chen, R. Rana, W. Zhou, Z.P. Shao, S.M. Liu, ” Assessment of Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta, 52 (2007) pp. 7343-7351.
[1.14] C.A.J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, K. Yabuta, “Oxide ion diffusion in perovskite-structured Ba1−xSrxCo1−yFeyO2.5:A molecular dynamics study”, Solid State Ionics, 177 (2007) pp. 3425–3431.
[1.15] W. Zhou, R. Ran, Z.P. Shao, R. Cai, W.Q. Jin, N.P. Xu, J.M. Ahn, ” Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathodes prepared via electroless deposition”, Electrochimica Acta, 53 (2008) pp. 4370-4380.
[1.16] B. Wei, Z. Lü, X.Q. Huang, J.P. Miao, X.Q. Sha, X.S. Xin, W.H. Su, “Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1−xCo0.8Fe0.2O3−δ (0.3 ≤ x ≤ 0.7)”, Journal of the European Ceramic Society, 26 (2006) 2827-2832.
[1.17] Y. Lin, R. Ran, Y. Zheng, Z.P. Shao, W.Q. Jin, N.P. Xu, J.M. Ahn, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell”, Journal of Power Sources, 180 (2008) pp. 15–22.
[1.18] W. Zhou, R. Ran, R. Cai, Z.P. Shao, W.Q. Jin, N.P. Xu, “Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3−δ electrode prepared by electroless deposition technique”, Journal of Power Sources, 186 (2009) pp. 244–251.
[1.19] Shao, Z., Zhou, W., Zhu, Z. “Advanced synthesis of materials for
intermediate-temperature solid oxide fuel cells”Progress in Materials Science, 57 (4), (2012)pp. 804-874.
[1.20] W.J. Zheng, C. Liu, Y. Yue, W.Q. Pang, “Hydrothermal synthesis and characterization of BaZr1-xMxO3-α (M = Al, Ga, In, x≦0.20) series oxides ”, Materials Letters, 30 (1997) pp. 93-97.
[1.21] Sui, J., Cao, L., Zhu, Q., Yu, L., Zhang, Q., Dong, L.“Effects of proton-conducting electrolyte microstructure on the performance of electrolyte-supported solid oxide fuel cells” Journal of Renewable and Sustainable Energy, 5 (2) (2013)
[1.22] K. Katahira , Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, 138 (2000) pp. 91–98.
[1.23] K.H. Ryu, S.M. Haile, ” Chemical stability and proton conductivity of doped BaCeO3 -BaZrO3 solid solutions”, Solid State Ionics, 125 (1999) pp. 355–367.
[1.24] Rinlee Butch Cervera , Y. Oyama, S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3 − δ by sol–gel method”, Solid State Ionics,178 (2007) pp. 569–574.
[1.25] Y.M. Guo, Y. Lin, R. Ran, Z.P. Shao, ” Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications”, Journal of Power Sources, 193 (2009) pp. 400–407.
[1.26] Bi, Lei, et al. "BaZr0. 8Y0. 2O3− δ-NiO composite anodic powders for proton-conducting SOFCs prepared by a combustion method." Journal of The Electrochemical Society 158.7 (2011): B797-B803.
[1.27] Z.J. Yang, W.B. Wang, J. Xiao, H.M. Zhang, F. Zhang, G.L. Ma, Z.F. Zhou, “A novel cobalt-free Ba0.5Sr0.5Fe0.9Mo0.1O3−δ–BaZr0.1Ce0.7Y0.2O3−αcomposite cathode for solid oxide fuel cells”, Journal of Power Sources, 204 (2012) pp. 89–93.
[1.28] B. Lin, H.P. Ding, Y.C. Dong, S.L. Wang, X.Z. Zhang, D.R. Fang, G.Y. Meng, “Intermediate-to-low temperature protonic ceramic membrane fuel cells withBa0.5Sr0.5Co0.8Fe0.2O3-δ–BaZr0.1Ce0.7Y0.2O3-δ composite cathode”, Journal of Power Sources, 186 (2009) pp. 58–61.
[1.29] Omar, Shobit, Eric D. Wachsman, and Juan C. Nino. "A co-doping approach towards enhanced ionic conductivity in fluorite-based electrolytes." Solid State Ionics 177.35 (2006): 3199-3203.
[1.30] H. Inaba, H. Tagawa, ” Ceria-based solid electrolytes”, Solid State Ionics, 83 (1996) pp. 1- 16.
[1.31] M. Johnsson, P. Lemmens, “Crystallography and Chemistry of Per-ovskites,” Handbook of Magnetism and Advanced Magnetic Media, pp. 2098–106.
[1.32] X.C. Liu, R.Z. Hong, C.S. Tian, “Tolerance factor and the stability discussion of ABO3-type ilmenite”, J Mater Sci : Mater Electron, 20 (2009) pp. 323–327.
[1.33] E. Traversa, E.Fabbri, formerly National Institute for Material Science, Japan.
[1.34] N. Agmon, “The Grotthuss mechanism”, Chemical Physics Letters, 244 (1995) pp. 456-462.
[1.35] M. Saiful Islam, “Ionic transport in ABO3 perovskite oxides: a computermodelling tour”, J. Mater. Chem., 10 (2000) pp. 1027-1038.
[1.36] K.D. Kreuer, ” Proton Conductivity: Materials and Applications”, Chem. Mater. 8 (1996) pp. 610-641
[1.37] Kreuer, K.D. ”Proton-Conducting Oxides” Annual Review of Materials Research, 33, (2003) pp. 333-359.
[1.38] Rossmeisl, Jan, and Wolfgang G. Bessler. "Trends in catalytic activity for SOFC anode materials." Solid State Ionics 178.31 (2008): 1694-1700.
[1.39] Zhu, W. Z., and S. C. Deevi. "A review on the status of anode materials for solid oxide fuel cells." Materials Science and Engineering: A 362.1 (2003): 228-239.
[1.40] E. Perry Murray, T. Tsai, S. A. Barnett, “A direct-methane fuel cell with a ceria-based anode“, Nature, 400 (1999) pp. 649-651.
[1.41] S.H. Chan, H.K. Ho, Y. Tian, ”Multi-level modeling of SOFC–gas turbine hybrid system”, International Journal of Hydrogen Energy, 28 (2003) pp. 889 – 900.
[1.42] S. M. Haile, “Fuel cell materials and components”, Acta Materialia, 51 (2003) pp. 5981–6000.
[1.43] Z.P. Shao, S. M. Haile, ” A high-performance cathode for the next generation of solid-oxide fuel cells”, Nature, 431 (2004) pp. 170-173.
[1.44] L. Yang, C.D. Zuo, S.H. Wang, Z. Cheng, and M. Liu, ” A Novel Composite Cathode for Low-Temperature SOFCs Based on Oxide Proton Conductors”, advanced material, 20 (2008) pp. 3280–3283.
[1.45] W.Y. Tan, Q. Zhong, M.S. Miao, H.X. Qu, ” H2S Solid oxide fuel cell based on a modified Barium cerate perovskite proton conductor”, Ionics , 15 (2009) pp. 385–388.
[1.46] H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, ”Proton Conduction in Sintered Oxides Based on BaCe03“, Journal of Electrochemical Society, 135 (1988) pp. 529–533.
[1.47] R.S. Gemmen, J. Trembly, “On the mechanisms and behavior of coal syngas transport and reaction within the anode of a solid oxide fuel cell”, Journal of Power Sources, 161 (2006) pp. 1084–1095.
[1.48] Z. Zhong, ”Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems”, Solid State Ionics, 178 (2007) pp. 213–220.
[1.49] M.Y. Gong, X. Liu, J. Trembly, C. Johnson, “Sulfur-tolerant anode materials for solid oxide fuel cell application”, Journal of Power Sources, 168 (2007) pp. 289–298.
[1.50] P. Babilo, T. Uda, S.M. Haile, “Processing of Yttrium-doped Barium Zirconate for High Proton Conductivity”, Materials Research Society, 22 (2007) pp. 1322-1330.
[1.51] Iijima, Masahiko, et al. "Cell Performance Stability of HMFC using Ba (Ce1-xZrx)0.8 Y0.2 O3 Perovskite Type Proton Conductor as Electrolyte." MRS Proceedings. Vol. 972. Cambridge University Press, (2006).
指導教授 李勝偉 審核日期 2017-5-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明