博碩士論文 104329019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:144 、訪客IP:3.129.22.135
姓名 蕭全斌(Cyuan-Bin Siao)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 直接雙色硒化鎘量子點的製備與應用
(Preparation and Application of Direct Bi-Color CdSe Quantum Dots)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 白光發光二極體(White light-emitting diode, WLED)已被廣泛地研究與應用於照明及顯示器,而在WLED中,由於量子點具有波長可調性、放射波長窄及高量子效率等優點,也被廣泛的應用為新穎下轉換材料。常見製備WLED的方法是使用不同顏色的量子點混合成白光,但因此製程相當複雜耗時且又有再吸收效應。因此,在本研究我們透過一個簡便的熱注射方式來製備具有雙放射波長的雙色CdSe量子點並解決再吸收效應,量子點依照不同硒粉前驅物之濃度分別命名為GR1.5、GR1.1與GR0.75,並使用雙色量子點及其與Y3Al5O12:Ce3+ 混合(YAG:Ce)的兩種方式製備WLED。
本研究分為三個部分,第一部分為雙色量子點的製備以及物性的探討,結果顯示透過控制成核成長速率,能夠製備出具有不同放射強度之綠色與紅色雙色量子點,且該綠色量子點對紅色量子點的激發面積比(Agex/Arex)隨著硒粉前驅物之濃度降低而上升,因此可以降低綠色量子點之能量被紅色量子點吸收之再吸收效應,此外硒之氧化程度直接影響整體之量子效率,實驗結果顯示GR0.75在所有雙色量子點中具有最低程度的硒之氧化以及最高的量子效率與最高放射面積比,並在時效4個月後的穩定性測試結果顯示其具有最佳的穩定性。
第二部分探討不同的雙色量子點以藍光晶片激發形成白光之元件特性,結果顯示GR0.75最能夠改善再吸收效應並成功製備WLED,且透過不同比例的UV膠與GR0.75混合,WLED的光色可從暖白調整至冷白光,穩定性也能夠從40分鐘提升至18小時,此外當UV膠在GR0.75中的重量為30 %時,該元件之色度座標為(0.35, 0.34)且應用於顯示器的背光源時,顯示該元件可在CIE1931色彩空間分別涵蓋89 %之NTSC色域與126 %之sRGB色域。
第三部分探討不同的雙色量子點添加於黃色螢光粉(Y3Al5O12:Ce3+)時,對於元件本身的特性之影響。結果顯示隨著雙色量子點的增加,WLED的光色可以從暖白調整到冷白光,當添加3 wt. %的GR1.5量子點時,發光效率可以從73提升至88 lm/W,增加至50 wt. %時,演色性能從66提升至83,其中當添加30 wt. %時可以被應用於固態照明,其元件特性為色度座標(0.33, 0.34),色溫5482 K,演色性75,發光效率65 lm/W。顯示這些雙色量子點對於黃色螢光粉的發光效率與演色性有顯著的影響。此外這些WLED經過長時間測試後顯示添加GR1.5量子點所製備的WLED元件不僅能夠保持初始的光色及演色性,還可以提升整體效率。
由以上結果可知藉由控制成核成長速率可製備具有雙色的量子點,當應用在WLED,GR0.75為最具有應用潛力之雙色奈米螢光粉,具有簡化製程與減少再吸收效應之優點,而GR1.5最能夠改善黃色螢光粉的發光效率與演色性,顯示出雙色量子點能成功輔助螢光粉的光學特性。
摘要(英)
White light emitting diodes (WLEDs) have been investigated comprehensively due to their broad applications in lighting and display and the application of quantum dots (QDs) as novel down-converting materials in WLEDs has been also attracted lots of attentions because of their controllable emission wavelength, narrow band emission and high quantum yields (QYs) of QDs. The common method to prepare the WLEDs is mixing multi-colors of QDs, which is complex, time-consuming and has strong reabsorption. Therefore, in this study, we have demonstrated a facile hot-injection method to synthesize direct bi-color CdSe QDs (named as GRx, x = 1.5, 1.1 and 0.75, x value is associated with TOP-Se concentration) with dual-wavelengths against the reabsorption effect, and the GRx QDs have been applied to fabricate the QDs- and Y3Al5O12:Ce3+ (YAG:Ce)-based WLEDs.
This study includes three major parts. The first part focuses on the preparation and characterization of bi-color QDs. The results show that the GRx QDs consist of different emission intensities between green and red QDs through control of nucleation and growth rates. The excitation area ratio of green to red (Agex/Arex) of QDs can be significantly increased as the x value decreases, meaning that the energy of the green QDs absorbed by the red QD is reduced to improve the reabsorption effect. However, the QY of these GRx QDs is mainly affected by the degree of Se oxidation. The GR0.75 QDs have the lowest degree of Se oxidation, the highest QY value, the highest excitation area ratio, and the best stability after aging in hexane for 4 months.
The second part focuses on the application of different GRx QDs in blue LED. The results show that the GR0.75 QDs can strongly against the reabsorption effect and generate the white light successfully. When the weight ratio of UV resin in GR0.75 QDs increases from 0 to 45 wt. %, the color can be easily adjusted from warm to cold white light, and the operation time can be increased from 40 min to 18 hr. However, when the UV resin content is 30 wt. %, the Commission international de I’Eclairage (CIE) located at (0.35, 0.34) can be applied as backlight source, providing 89 and 126 % color gamut in NTSC and sRGB standards, respectively.
The third part focuses on the performance of YAG:Ce-based WLED when the GRx QDs have been added to YAG:Ce phosphor as additional components. The color of YAG:Ce-based WLEDs can be changed from warm to cold white light as the contents of GRx QDs increase. The best improvement in luminous efficacy is the addition of 3 wt. % of the GR1.5 QDs and the efficacy can be improved from 73 to 88 lm/W. On the other hand, the CRI can be promoted from 66 to 83 when the GR1.5 QDs content is 50 wt. %. Besides, the optimal condition to be applied in solid state lighting is mixing with 30 wt. % GR1.5 QDs. The CIE, CCT, CRI and luminous efficacy of device properties is (0.33, 0.34), 5482 K, 75 and 65 lm/W, respectively. The results show that these GRx QDs have a significant effect on luminous efficacy and color rendering index (CRI) of YAG:Ce phosphor. In addition, the long-term test shows that the addition of GR1.5 QDs into WLED can not only maintain the initial lighting color and CRI, but also improve the overall efficacy.
Based on the above results, the bi-color GRx QDs can be prepared by controlling the nucleation and growth rates. In QDs-WLED applications, the GR0.75 QDs exhibit the potential as bi-color nanophosphor to simplify the preparation procedure and decrease the reabsorption effect. In addition, the GRx QDs can be used as additional components to increase the luminous efficacy and CRI, especially GR1.5 QDs, compared to the original YAG:Ce-based WLED.
關鍵字(中) ★ 量子點
★ 硒化鎘
★ 雙色
★ 再吸收效應
★ 白光發光二極體
★ Y3Al5O12:Ce3+
關鍵字(英) ★ quantum dots (QDs)
★ CdSe
★ bi-color
★ reabsorption effect
★ white light emitting diodes (WLEDs)
★ Y3Al5O12:Ce3+ (YAG:Ce)
論文目次
摘要 I
Abstract IV
Table of Contents VII
List of Figures X
List of Tables XV
Chapter I Introduction 1
1.1 Color gamut of liquid crystal display (LCD) 2
1.2 Bi-color emitting QDs of CdSe-typed 6
1.3 The reaction mechanism of CdSe QDs 12
1.3.1 The hot-injection method 12
1.3.2 Size control of CdSe QDs 16
1.4 Motivation and Approach 22
Chapter II Experimental Section 24
2.1 Chemicals and materials 24
2.2 Preparation of QDs 26
2.2.1 Preparation of Bi-color GRx QDs 26
2.2.2 Stability test of GRx QDs 28
2.3 Preparations of WLEDs 29
2.3.1 Preparation of QDs-based WLEDs 29
2.3.2 YAG:Ce-based WLEDs 29
2.3.3 Stability test of WLEDs 29
2.4 Characterization of Materials and Devices 34
2.4.1 Ultraviolet -visible absorption spectroscopy (UV-vis) 34
2.4.2 Fluorescence spectroscopy (FL) 34
2.4.3 Time-resolved photoluminescence spectroscopy (TRPL) 34
2.4.4 Transmission electron microscopy (TEM) 36
2.4.5 Field emission electron microscopy (FESEM) 36
2.4.6 X-ray diffraction (XRD) 36
2.4.7 X-ray photoelectron spectroscopy (XPS) 36
2.4.8 X-ray absorption spectroscopy (XAS) 37
2.4.9 QY measurement 38
2.4.10 Integrating sphere measurement 38
Chapter III Results and Discussion 39
3.1 The optical and physical properties of GRx QDs 39
3.1.1 XRD and TEM characterizations 39
3.1.2 FL spectra and PL lifetime characterizations 41
3.1.3 XPS and XAS characterizations 49
3.1.4 Stability of QDs 57
3.1.5 Summary 59
3.2 The bi-color GRx QDs-based WLEDs 62
3.2.1 Optical properties of bi-color GRx QDs 62
3.2.2 Electroluminescence of GRx QDs-based WLEDs 65
3.2.3 Stability of GR0.75 QDs-based WLEDs 68
3.2.4 The QDs-based WLEDs applied in LCD backlight 75
3.2.5 Summary 79
3.3 The application of GRx QDs on YAG:Ce-based WLEDs 81
3.3.1 The optical properties and morphology of YAG:Ce phosphor 81
3.3.2 Electroluminescence of Y/GRx-WLEDy 85
3.3.3 Stability of Y/GRx-WLEDy 90
3.3.4 Summary 97
Chapter IV Conclusion 99
References 101
參考文獻
[1] Q. Zhang, C. F. Wang, L. T. Ling, S. Chen, J. Mater. Chem. C, 2014, 2, 4358.
[2] T. Erdem, H. V. Demir, Nanophotonics, 2013, 2, 57.
[3] W. Bi, S. Xu, C. Geng, F. Zhao, X. Jiang, Proc. of SPIE, 2016, 9924, 992403.
[4] C. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706.
[5] B. K. H. Yen, N. E. Stott, K. F. Jensen, M. G. Bawendi, Adv. Mater., 2003, 15, 1858.
[6] O. Chen, H. Wei, A. Maurice, M. Bawendi, P. Reiss, MRS Bull., 2013, 38, 696.
[7] N. T. Tran, J. P. You, F. G. Shi, J. Lightwave Technol., 2009, 27, 5145.
[8] S. R. Chung, K. W. Wang, H. S. Chen, H. H. Chen, J. Nanopart. Res., 2015, 17, 101.
[9] Z. Luo, Y. Chen, S. T. Wu, Opt. Express, 2013, 21, 26269.
[10] X. Rong-Jun, H. Naoto, T. Takashi, Appl. Phys. Express, 2009, 2, 022401.
[11] L. Wang, X. Wang, T. Kohsei, K. I. Yoshimura, M. Izumi, N. Hirosaki, R. J. Xie, Opt. Express, 2015, 23, 28707.
[12] M. Anandan, J. Soc. Inf. Disp., 2008, 16, 287.
[13] C. F. He, K. Y. Qian, H. F. Wang, Proc. of SPIE, 2017, 10244, 102440O.
[14] Y. Shirasaki, G. J. Supran, M. G. Bawendi, V. Bulovic, Nat. Photon., 2013, 7, 13.
[15] E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, Y. Kim, Adv. Mater., 2010, 22, 3076.
[16] T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, K. Kim, Nat. Photon., 2011, 5, 176.
[17] X. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S. T. Tan, X. W. Sun, H. V. Demir, ACS Nano, 2014, 8, 8224.
[18] K. H. Lee, C. Y. Han, H. D. Kang, H. Ko, C. Lee, J. Lee, N. Myoung, S. Y. Yim, H. Yang, ACS Nano, 2015, 9, 10941.
[19] A. Yemliha, G. Sinan, T. Mohammad Younis, M. Evren, Nanotechnology, 2016, 27, 295604.
[20] A. S. Kuznetsov, V. K. Tikhomirov, M. V. Shestakov, V. V. Moshchalkov, Nanoscale, 2013, 5, 10065.
[21] H. S. Chen, C. K. Hsu, H. Y. Hong, IEEE Photon. Technol. Lett., 2006, 18, 193.
[22] S. Nizamoglu, T. Ozel, E. Sari, H. V. Demir, Nanotechnology, 2007, 18, 065709.
[23] X. Wang, W. Li, K. Sun, J. Mater. Chem., 2011, 21, 8558.
[24] Y. Lin, Y. Zhang, J. Zhao, P. Gu, K. Bi, Q. Zhang, H. Chu, T. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, Particuology, 2014, 15, 90.
[25] X. Peng, J. Opt., 2015, 44, 249.
[26] D. Battaglia, B. Blackman, X. Peng, J. Am. Chem. Soc., 2005, 127, 10889.
[27] S. Nizamoglu, E. Mutlugun, T. Ozel, H. V. Demir, S. Sapra, N. Gaponik, A. Eychmüller, Appl. Phys. Lett., 2008, 92, 113110.
[28] D. Hilmi Volkan, N. Sedat, M. Evren, O. Tuncay, S. Sameer, G. Nikolai, E. Alexander, Nanotechnology, 2008, 19, 335203.
[29] H. S. Chen, R. V. Kumar, J. Phys. Chem. C, 2009, 113, 12236.
[30] H. S. Chen, H. Y. Hong, R. V. Kumar, J. Mater. Chem., 2011, 21, 5928.
[31] J. Chang, E. R. Waclawik, RSC Adv., 2014, 4, 23505.
[32] C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706.
[33] Z. A. Peng, X. Peng, J. Am. Chem. Soc., 2001, 123, 183.
[34] A. P. Alivisatos, J. Phys. Chem., 1996, 100, 13226.
[35] D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, H. Weller, J. Phys. Chem. B, 2004, 108, 18826.
[36] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B, 1997, 101, 9463.
[37] D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, Nano Lett., 2001, 1, 207.
[38] L. Qu, X. Peng, J. Am. Chem. Soc., 2002, 124, 2049.
[39] A. Fick, Ann. Phys., 1855, 170, 59.
[40] T. Sugimoto, Adv. Colloid Interface Sci., 1987, 28, 65.
[41] D. V. Talapin, A. L. Rogach, M. Haase, H. Weller, J. Phys. Chem. B, 2001, 105, 12278.
[42] L. Qu, Z. A. Peng, X. Peng, Nano Lett., 2001, 1, 333.
[43] C. De Mello Donegá, P. Liljeroth, D. Vanmaekelbergh, Small, 2005, 1, 1152.
[44] I. S. Liu, H. H. Lo, C. T. Chien, Y. Y. Lin, C. W. Chen, Y. F. Chen, W. F. Su, S. C. Liou, J. Mater. Chem., 2008, 18, 675.
[45] X. Wang, L. Qu, J. Zhang, X. Peng, M. Xiao, Nano Lett., 2003, 3, 1103.
[46] M. Jones, G. D. Scholes, J. Mater. Chem., 2010, 20, 3533.
[47] H. Yoshida, S. Nonoyama, Y. Yazawa, T. Hattori, Phys. Scripta, 2005, 2005, 813.
[48] K. Shimizu, Y. Kamiya, K. Osaki, H. Yoshida, A. Satsuma, Catal. Sci. Tech., 2012, 2, 767.
[49] Z. Deng, L. Cao, F. Tang, B. Zou, J. Phys. Chem. B, 2005, 109, 16671.
[50] A. Chakrabarty, S. Marre, R. F. Landis, V. M. Rotello, U. Maitra, A. D. Guerzo, C. Aymonier, J. Mater. Chem. C, 2015, 3, 7561.
[51] L. Qu, W. W. Yu, X. Peng, Nano Lett., 2004, 4, 465.
[52] X. Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc., 1998, 120, 5343.
[53] M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros, M. Rosen, Phys. Rev. Lett., 1995, 75, 3728.
[54] J. Turkevich, Gold Bull., 1985, 18, 86.
[55] M. Nirmal, C. B. Murray, M. G. Bawendi, Phys. Rev. B, 1994, 50, 2293.
[56] S. R. Chung, K. W. Wang, M. W. Wang, J. Nanosci. Nanotechnol., 2013, 13, 4358.
[57] W. Chung, K. Park, H. J. Yu, J. Kim, B.-H. Chun, S. H. Kim, Opt. Mater., 2010, 32, 515.
[58] S. Jun, J. Lee, E. Jang, ACS Nano, 2013, 7, 1472.
[59] L. Brus, J. Phys. Chem., 1986, 90, 2555.
[60] H. Weller, Angew. Chem. Int. Ed., 1993, 32, 41.
[61] J. E. B. Katari, V. L. Colvin, A. P. Alivisatos, J. Phys. Chem., 1994, 98, 4109.
[62] K. B. Subila, G. Kishore Kumar, S. M. Shivaprasad, K. George Thomas, J. Phys. Chem. Lett., 2013, 4, 2774.
[63] S. Pokrant, K. B. Whaley, Eur. Phys. J. D, 1999, 6, 255.
[64] T. M. Inerbaev, A. E. Masunov, S. I. Khondaker, A. Dobrinescu, A.-V. Plamadă, Y. Kawazoe, J. Chem. Phys., 2009, 131, 044106.
[65] E. Kuçur, W. Bücking, T. Nann, Microchim. Acta, 2008, 160, 299.
[66] D. A. Hines, M. A. Becker, P. V. Kamat, J. Phys. Chem. C, 2012, 116, 13452.
[67] L. Liu, Q. Peng, Y. Li, Inorg. Chem., 2008, 47, 3182.
[68] W. G. Van Sark, P. L. T. M. Frederix, A. A. Bol, H. C. Gerritsen, A. Meijerink, ChemPhysChem, 2002, 3, 871.
[69] D. Sun, H. J. Sue, N. Miyatake, J. Phys. Chem. C, 2008, 112, 16002.
[70] M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, G. Rumbles, J. Phys. Chem. B, 2003, 107, 11346.
[71] K. Kim, J. Y. Woo, S. Jeong, C. S. Han, Adv. Mater., 2011, 23, 911.
[72] F. Zan, J. Ren, J. Mater. Chem., 2012, 22, 1794.
[73] C. Carrillo-Carrion, S. Cardenas, B. M. Simonet, M. Valcarcel, Chem. Commun., 2009, 5214.
[74] Q. Cai, H. Zhou, F. Lu, Appl. Surf. Sci., 2008, 254, 3376.
[75] Y. Wang, Z. Tang, M. A. Correa-Duarte, I. Pastoriza-Santos, M. Giersig, N. A. Kotov, L. M. Liz-Marzán, J. Phys. Chem. B, 2004, 108, 15461.
[76] S. Keiichi, K. Satoshi, H. Shinya, C. Taeko, U. S. Keiko, T. Tsukasa, T. Yasuhiro, K. Susumu, Nanotechnology, 2007, 18, 465702.
[77] J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, S. Coe-Sullivan, J. Soc. Inf. Disp., 2015, 23, 294.
[78] S. C. Huang, J. K. Wu, W. J. Hsu, H. H. Chang, H. Y. Hung, C. L. Lin, H. Y. Su, N. Bagkar, W. C. Ke, H. T. Kuo, R. S. Liu, Int. Appl. Ceram. Tec., 2009, 6, 465.
[79] C. Y. Shen, K. Li, Q. L. Hou, H. J. Feng, X. Y. Dong, IEEE Photon. Technol. Lett., 2010, 22, 884.
[80] S. R. Chung, S. S. Chen, K. W. Wang, C. B. Siao, RSC Adv., 2016, 6, 51989.
[81] H. S. Jang, D. Y. Jeon, Appl. Phys. Lett., 2007, 90, 041906.
[82] H. K. Park, J. H. Oh, Y. Rag Do, Opt. Express, 2012, 20, 10218.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2017-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明