博碩士論文 102389003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:3.149.252.8
姓名 郭偉正(Wei-Cheng Kuo)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 低溫成長新式矽基鍺薄膜應用於矽基光電元件
(Low Temperature Growth New Ge/Si Films and Application for Silicon Based Optoelectronic Device Development)
相關論文
★ 類磊晶薄膜成長與調控並利用於太陽能電池之研究★ 矽基鍺薄膜光偵測器之研究
★ 低溫製備矽基鍺磊晶薄膜及矽基鍺緩衝層砷化鎵薄膜之研究★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究
★ 導波共振光學元件應用於生物感測器之研究★ 具平坦化側帶之超窄帶波導模態共振濾波器研究
★ 低溫成長鍺薄膜於單晶矽基板上之研究★ 矽鍺薄膜及其應用於光偵測器之研製
★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器★ 整合慣性感測元件之導波矽基光學平台研究
★ 矽基光偵測器研製與整合於光學波導系統★ 光學滑鼠用之光學元件設計
★ 高效率口袋型LED 投影機之研究★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究
★ 極化繞射光學元件在高密度光學讀取頭上之應用研究★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於積體電路製程的快速發展,元件尺寸愈發的小型化,傳統的封裝方式已經無法負荷微型製程的需求,將矽鍺光電元件直接成長於矽基板上的「矽光電子學技術」因而應運再生,而「矽基磊晶鍺薄膜技術」更是矽光電子學中的關鍵技術。本論文中,我們以 ”電子迴旋共振化學氣相沈積法” 研發矽基磊晶鍺薄膜,並以矽基磊晶鍺薄膜技術為基底,進行薄膜磊晶成長與分析,並將其應用於矽基鍺光偵測器與矽基III-V族太陽能電池等光電元件。由於電子迴旋共振化學氣相沈積法具有低表面損傷、高解離率、低溫成長等優點,在沉積矽基磊晶鍺薄膜時,能夠較有效率的提升薄膜的結晶率,並降低缺陷密度與表面粗糙度。此外,本研究的低溫薄膜成長技術除了可進一步減少熱應力在薄膜中造成的缺陷外,還可減少高溫所造成元件整合限制,有效地促進低溫製程的開發。
本論文研究主軸可分為三部分:
一、薄膜磊晶成長與分析:此項研究使用電子迴旋共振化學氣相沈積法超低溫(180°C) 磊晶成長非摻雜與重摻雜矽基鍺薄膜,並進行磊晶薄膜的特性、應力與介面分析。由於矽和鍺的晶格不匹配(4.2%)及熱膨脹係數差異(55%),容易導致矽基磊晶鍺的品質不佳。而本項研究成功以超低溫(180°C)、高氫稀釋比(H2/GeH4= 16) 磊晶成長高品質的非摻雜矽基鍺薄膜,其X光繞射之半高寬可達495 arcsec。此項成果為本研究的主要成果之一,不但突破了傳統化學氣相沉積所需的高溫製程,同時也解決了矽鍺間熱膨脹係數差異的影響,更使磊晶鍺薄膜之品質達到不錯的水準。除此之外,本研究藉由調變ECR-CVD製程參數,可控制鍺薄膜之應變,其控制範圍從0.58%的壓縮應變到0.15%的拉伸應變。研究結果發現,腔體壓力由2.6pa提升至4.7pa時,鍺薄膜將會由0.58%的壓縮應變轉變為0.09%的拉伸應變;將磁場電流由40A提升至55A時,鍺薄膜將會由0.15%的拉伸應變轉變為0.15%的壓縮應變。而藉由調整鍺薄膜內的拉伸應變,將可使鍺材料的截止波長產生紅位移,使其光吸收範圍擴大,甚至使鍺材料由間接能隙轉變為直接能隙,實現矽鍺光二極體、矽鍺雷射之目標。而傳統的鍺薄膜大都是以高溫退火或調整結構等方式來進行應變調製,本研究則創新以調變成膜參數之方式,控制鍺薄膜內之應變,成功使鍺薄膜之截止波長由1550 nm移動到1650 nm。此項突破成功地使鍺薄膜光吸收範圍增加,對於提高光偵測器或太陽能電池之效率皆有極大之幫助。
另一方面,對光偵測器來說,為了減少響應時間的延遲,一般接合面均要求儘量接近光偵測器的表面,本研究則藉由調整氫氣流量(0到60sccm)成功成長厚度為30nm、摻雜濃度可達8×1020 cm-3的重摻雜P型超薄磊晶鍺薄膜,藉由薄型摻雜層的開發,將可大幅減少響應時間的延遲。此外,雖然重摻雜薄膜擁有極好的電性,但是高摻雜相對也容易造成較多的缺陷,也較不易形成單晶結構。而本項研究則兼具重摻雜、超薄、單晶幾項特點,其良好的電性(Resistivity可低於5x10-4 Ω-cm) 與薄型厚度(30nm)可減少光偵測器響應時間的延遲;若和多晶結構相比,單晶結構缺陷也較少,能有效地降低光偵測器之暗電流。
二、低溫矽基鍺光偵測器研發。本項研究是將上述研究之矽基磊晶鍺薄膜製作成垂直型矽基鍺光偵測器,其光響應可達0.17(A/W),暗電流密度可達0.542 (mA/cm2),而目前文獻中垂直型矽基鍺光偵測器之響應大多在0.1~0.3(A/W)之間;暗電流密度則介於50~0.5 (mA/cm2)之間,故本研究所開發之低溫矽基鍺光偵測器之特性有一定的水準,其並不會輸給高溫矽基鍺光偵測器。此外本研究顯示,藉由調整光偵測器中的重摻雜P型超薄磊晶鍺薄膜之氫氣流量,可減少光偵測器之暗電流。實驗結果顯示將氫氣流量由60 sccm降於0 sccm,光偵測器之暗電流可由10-6 A降至10-7A。
矽基鍺光偵測器其優點是易於微小化與積體化的整合於矽晶片上,若結合波導光路、雷射光源、光調變器等元件,將可發展以矽光電子學為主的光通訊技術。一般傳統磊晶製程,如分子束磊晶法或是超高真空化學氣相沉積法,往往需要超過600 ˚C的高溫,而過高的溫度常會形成熱應力、元件整合溫度受限及高熱成本等重重困難。而本研究之光偵測器從薄膜磊晶到元件製作,溫度都不超過200°C,對於改善上述之困難有極大之幫助。
三、III-V族薄膜與元件堆疊於矽基鍺薄膜特性分析:本項研究是將III-V族薄膜與元件磊晶堆疊於矽基鍺薄膜上,並進行III-V族薄膜與元件特性分析,其中鍺薄膜是由前述ECR-CVD所成長,III-V族薄膜則是由MOCVD所成長,此項研究目的是藉由鍺薄膜來解決III-V族與矽材料間的晶格不匹配問題。目前III-V族光電元件整合於矽晶片是以封裝整合於矽基板上,但隨著元件持續縮小,傳統封裝方式將逐漸不適用。如能將III-V族元件直接成長於矽基板上,除了可降低成本外,更有利於大規模量產製造。此外,對於太陽能電池來說,則可結合了III-V族太陽能電池高效率與矽基板低成本的兩項優點,將可利於開發出高效率、低成本的新形態太陽能電池。而本研究則藉由調變非摻雜本質鍺薄膜之氫氣流量(60~90sccm),接著進行退火來研發適合當作緩衝層的磊晶鍺薄膜。研究結果顯示當氫氣流量在80sccm時,磊晶鍺薄膜品質最好,其結晶率可達94%; X光繞射之半高寬可達507arcsec。而將此薄膜進行700°C、5分鐘之高溫退火後,其X光繞射之半高寬可由507降至407 arcsec。接著我們將單晶GaAs薄膜成長於上述矽基鍺薄膜上,其X光繞射之半高寬可達220 arcsec、缺陷密度為106 cm-3。此成果已實現III-V族光電元件直接成長於矽基板上之可行性,並符合未來微小化,低成本的趨勢。
摘要(英)
In this information explosion era, the topic of energy and communication are payed attention to many people. The Ge/Si technology provide many advantage to develop those topic, such as: quasi-direct bandgap, lattice match between GaAs and Si materials, easy monolithic integrated on Si substrate. Therefore, the development of Ge/Si device is significantly payed attention for scientists. In order to obtain high performance Ge/Si device, the Ge epilayers quality is very important. In this study, we investigated the Ge epilayers by high plasma density electron cyclotron resonance vapor deposition method and apply these films for solar cells and photodetectors development.
A suitable Ge film growth method can significantly enhance the Ge epilayer quality. The electron cyclotron resonance chemical vapor deposition provide a number of advance to grow Ge epilayers, for example: high crystallinity, low growth temperature and less ion damage to the surface. In this dissertation, the study can divide into three parts:
In the first part, we use electron cyclotron resonance chemical vapor deposition to investigate the strain behavior in Ge epilayers grown on silicon at a low temperature of 220°C. The strain in the Ge epilayers is transformed from compressive (-0.567%) to tensile (0.15%) as the process pressure decreases and main coil current increases. This tensile strain is due to intrinsic stress in the Ge epilayers at high process pressure and low main coil current. Besides, the Ge atoms have higher kinetic energy and shorter mean free path at low process pressure and high main coil current, which causes atomic bombardment effect on the Ge surfaces frequently. Thus, the intrinsic stress in Ge epilayers become compressive. The absorption coefficient of tensile and compressive strain in Ge films are measured using a UV–VIS-NIR spectrophotometer. The results show the absorption coefficients of the tensile strain Ge epilayer has a redshift condition on the absorption edge compare with compressive strain Ge epilayers. Finally, the structure information of the Ge epilayers is identified by atomic force microscopy and transmission electron microscopy. This strain control technology is modulated by film growth parameter, which can adjust the Ge bandgap for the device requirement.
In second part, we study the heavily boron-doped hydrogenated Ge epilayers are grown on Si substrates at a low growth temperature (220°C). The quality of the boron-doped epilayers is dependent on the hydrogen flow rate. The optical emission spectroscopic, X-ray diffraction and Hall measurement results demonstrate that better quality boron-doped Ge epilayers can be obtained at low hydrogen flow rates (0 sccm). This reduction in quality is due to an excess of hydrogen in the source gas, which breaks one of the Ge-Ge bonds on the Ge surface, leading to the formation of unnecessary dangling bonds. The structure of the boron doped Ge epilayers is analyzed by transmission electron microscopy and atomic force microscopy. In addition, the performance, based on the I-V characteristics, of Ge/Si photodetectors fabricated with boron doped Ge epilayers produced under different hydrogen flow rates was examined. The photodetectors with boron doped Ge epilayers produced with a low hydrogen flow rate (0 sccm) exhibited a higher responsivity of 0.144 A/W and a lower dark current of 5.33×10-7 A at a reverse bias of 1 V.
In third part, we present high quality GaAs epilayers grow on virtual substrate with 100nm Ge buffer layers. The thin Ge buffer layers were modulated by hydrogen flow rate from 60 to 90 sccm to improve crystal quality by electron cyclotron resonance chemical vapor deposition (ECR-CVD) at low growth temperature (180°C). The GaAs and Ge epilayers quality was verified by X-ray diffraction (XRD), and spectroscopy ellipsometry (SE).The full width at half maximum (FWHM) of the Ge and GaAs epilayers in XRD is 406 arcsec and 220 arcsec, respectively. In addition, the GaAs/Ge/Si interface is observed by transmission electron microscopy (TEM) to demonstrate the epitaxial growth. The defects at GaAs/Ge interface are localized within a few nanometers. It is clearly showed that the dislocation is well suppressed. The quality of the Ge buffer layer is the key of III–V /Si tandem cell, Therefore, the high quality GaAs epilayers grow on virtual substrate with 100nm Ge buffer layers is suitable to develop the low cost and high efficiency III-V/Si tandem solar cells.
關鍵字(中) ★ 低溫
★ 矽
★ 鍺
★ 光偵測器
關鍵字(英) ★ low temperature
★ Si
★ Ge
★ photodetector
論文目次
Content
Abstract I
Abstract in Chinese IV
Content VII
List of Figures and Table X
Chapter 1 - Introduction 1
1-1 The importance of Ge materials in the world 1
1-2 The importance of Ge materials in the tandem solar cells 2
1-3 The importance of Ge materials in the Si photonics 3
1-4 Ge research objectives in this study 4
Chapter 2 - Theory and literature review 7
2-1 Ge films property 7
2-1-1 The property of tensile strain Germanium 7
2-1-2 The improvement and application of tensile strain Ge 8
2-2 Ge epilayers growth 10
2-2-1 Ge growth method 10
2-2-2 Ge growth process and mechanism 10
2-3-3 low temperature epitaxial growth Ge 14
2-3 The improvement of Ge epilayer quality 15
Chapter 3 - Strain-controlled of compressive/tensile Ge epilayers on Si by electron cyclotron resonance chemical vapor deposition 18
3-1 Introduction 18
3-2 Experimental Details 20
3-3 Results and Discussion 20
3-3-1 Deposition Rate and Microstructure 20
3-3-2 Tensile strain Ge characteristics 22
3-3-3 Surface morphology and cross sectional of Ge/Si films 27
3-4 Summaries 30
Chapter 4 - Low temperature growth of heavy boron-doped hydrogenated Ge epilayers and its application in Ge/Si photodetectors 31
4-1 Introduction 31
4-2 Experimental Details 33
4-3 Results and discussion 34
4-3-1 p-Ge film characteristics 34
4-3-2 p-Ge film electrical properties 36
4-3-3 Surface morphology and cross sectional of p-Ge films 38
4-3-4 Ge/Si photodetector 39
4-4 Summaries 40
Chapter 5 - High quality GaAs epilayers grown on Si substrate using 100nm Ge buffer layer 42
5-1 Introduction 42
5-2 Experimental Details 44
5-3 Results and Discussion 44
5-3-1 Ge epilayers properties 44
5-3-2 The properties of GaAs epilayers grown on Ge/Si 48
5-4 Summaries 49
Chapter 6 Summary 51
Chapter 7 Future Work 53
Chapter 8 - References 55
Chapter 9 - Publication List 64
• Journal Paper List: 64
• International Conference Paper List: 64
參考文獻

1. Matteo Bosi, Giovanni Attolini, “Germanium: Epitaxy and its applications”, Progress in Crystal Growth and Characterization of Materials, 56, 146-174, 2010.
2. H. Karstensen, C. Hanke, M. Honsberg, J.-R. Kropp, J. Wieland, M. Blaser, P. Weger, and J. Popp, “Parallel optical interconnection for uncoded data transmission with 1 Gb/s-per-channel capacity, high dynamic range, and low power consumption”, J. Lightwave Technol., 13, 1017–1030, 1995.
3. Yiu-Man Wong, Member, IEEE, Dirk J. Muehlner, C. C. Faudskar, D. Bruce Buchholz, Mikhail Fishteyn, “. Technology Development of a High-Density 32-Channel 16-Gb/s Optical Data Link For Optical Interconnection Applications for the Optoelectronic Technology Consortium (OETC)”, Journal of lightwave technology, 13, 6 , 1995.
4. F. Mederer, R. Jäger, H. J. Unold, R. Michalzik, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, “3-Gb/s Data Transmission With GaAs VCSELs Over PCB Integrated Polymer Waveguides”, IEEE Photonics technologyletters, 13, 9, 2001.
5. Jifeng Liu , Rodolfo Camacho-Aguilera , Jonathan T. Bessette , Xiaochen Sun , Xiaoxin Wang , Yan Cai , Lionel C. Kimerling , Jurgen Michel, “Ge-on-Si optoelectronics”, Thin Solid Films, 520, 3354–3360, 2012.
6. Papichaya Chaisakul, Delphine Marris-Morini, Jacopo Frigerio, Daniel Chrastina, Mohamed-Said Rouifed, Stefano Cecchi, Paul Crozat, Giovanni Isella and Laurent Vivien, “Integrated germanium optical interconnects on silicon substrates”, Naturephotonics, 8, 482, 2014.
7. L. Colace, G. Masini, G. Assanto, Hsin-Chiao Luan, K. Wada, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates”, Applied physics letters,76, 10, 2000.
8. L. Colace, G. Masini, F. Galluzzi, and G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si”, Applied physics letters, 72, 24 , 1998.
9. “GERMANIUM “, U.S. Geological Survey, Mineral Commodity Summaries, January 2017.
10. “Germanium: 2017 World Market Review and Forecast”, Merchant Research & Consulting, Ltd , January 2017.
11. “Global Solar Market to Hit 85GW in 2017”, GTM Research, Global Solar Demand Monitor, Q1 2017.
12. Zhiping Zhou, Xingjun Wang, Huaxiang Yi, Zhijuan Tu, Wei Tan, Qifeng Long, Mei Yin and Yawen Huang, “Silicon photonics for advanced optical communication systems”, Optical Engineering , 52, 045007, 2013.
13. Jifeng Liu, “Monolithically Integrated Ge-on-Si Active Photonics”, Photonics, 1, 162-197, 2014.
14. Yorktown Heights,” IBM’s Silicon Photonics Technology Ready to Speed up Cloud and Big Data Applications”, IBM news, 12, 5, 2015.
15. Yasuhiko Ishikawa, Kazumi Wada, Douglas D. Cannon, Jifeng Liu, Hsin-Chiao Luan and Lionel C. Kimerling,” Strain-induced band gap shrinkage in Ge grown on Si substrate”, Applied physics letters, 82, 13, 2003.
16. Jifeng Liu, Douglas D. Cannon, Kazumi Wada, Yasuhiko Ishikawa, Samerkhae Jongthammanurak, David T. Danielson, Jurgen Michel, and Lionel C. Kimerling,” Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications”, Applied physics letters, 87, 011110, 2005.
17. Samerkhae Jongthammanurak, Jifeng Liu, Kazumi Wada, Douglas D. Cannon, David T. Danielson, Dong Pan, Lionel C. Kimerling, and Jurgen Michel, “Large electro-optic effect in tensile strained Ge-on-Si films”, Applied physics letters, 89, 161115, 2006.
18. Marc Schmid , Michael Oehme, Martin Gollhofer, Roman Körner, Mathias Kaschel, Erich Kasper, and Joerg Schulze, “Effect of heavy doping and strain on the electroluminescence of Ge-on-Si light emitting diodes,” Thin Solid Films, 557 , 351–354, 2014.
19. Takuya Mizutani, Osamu Nakatsuka, Akira Sakai, Hiroki Kondo, Masaki Ogawa and Shigeaki Zaima, “Novel method to introduce uniaxial tensile strain in Ge by microfabrication of Ge/Si1-xGex structures on Si(0 0 1) substrates”, Solid-State Electronics, 53, 1198–1201,2009.
20. R. Kuroyanagi, L.M. Nguyen, T. Tsuchizawa, Y. Ishikawa, K. Yamada,and K. Wada,” Local bandgap control of germanium by silicon nitride stressor”, Optics Express, 21, 18553, 2013.
21. Keisuke Nishida, Xuejun Xu , Kentarou Sawano, Takuya Maruizumi, Yasuhiro Shiraki,” Highly n-doped, tensile-strained Ge grown on Si by molecular beam epitaxy”, Thin Solid Films, 557, 66–69, 2014.
22. Texas Instruments, Process Design and Control, Semiconductor Process and Device Center,” Etching SiO2 Films in Aqueous 0.49% HF,” Journal of the Electrochemical Society,143, 1996.
23. Kenzie Tamaru, Michel Boudart, Hugh Taylor,” The Thermal Decomposition of Germane. I. Kinetics”, The Journal of Physical chemistry, 59, 801–805 , 1955.
24. D. J. Eaglesham and M. Cerullo,”Dislocation –Free Stranskie-Krastanov Growth of Ge on Si”, Physical Review Letter,64, 16, 1990.
25. T. Motooka and J. E. Greene,” A model for the low temperature growth of epitaxial Ge and Si films from GeH2 and SiH2 radicals produced by UV photolysis of GeH4 and SiH4”, Journal of Applied physics,59, 2015, 1986.
26. Brian Cunningham, Jack O. Chu, and Shah Akbar, ” Heteroepitaxial growth of Ge on (100) Si by ultrahigh vacuum, chemical vapor deposition”, Applied physics letters, 59, 27, 1991.
27. . Akira Sakai and Toru Tatsumi, “Ge growth on Si using atomic hydrogen as a surfactant”, Applied physics letters,
28. T. I. Kamins, E. C. Carr, R. S. Williams, and S. J. Rosner,” Deposition of three-dimensional Ge islands on Si(001) by chemical vapor deposition at atmospheric and reduced pressures”, Applied physics letters, 81, 1, 1997.
29. G Isella, J Osmond, M Kummer, R Kaufmann and H von K¨anel, “Heterojunction photodiodes fabricated from Ge/Si (1 0 0) layers grown by low-energy plasma-enhanced CVD”, Semiconductor Science and Technology, 22, S26–S28, 2007.
30. Masatoshi Sugita, Yukio Sano, Yuki Tomita, Masao Isomura, “Microcrystalline germanium thin films prepared by the reactive RF sputtering method”, Journal of Non-Crystalline Solids, 354, 2113–2116, 2008.
31. Vito Sorianello, Lorenzo Colace, Nicola Armani, Francesca Rossi, Claudio Ferrari, Laura Lazzarini, and Gaetano Assanto, “Low-temperature germanium thin films on silicon”, Optical Mater Express, 1, 856, 2011.
32. Yuji Yamamoto, Peter Zaumseil, Tzanimir Arguirov, Martin Kittler and Bernd Tillack,” Low threading dislocation density Ge deposited on Si (1 0 0) using RPCVD”, Solid-State Electronics, 60, 2–6, 2011.
33. J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon and J. M. Fe´de´ li,” Reduced pressure–chemical vapor deposition of Ge thick layers on Si„(001 )for 1.3–1.55-mm photodetection”,Journal of Applied physics,95, 10, 2004.
34. Arne Nylandsted Larsen,” Epitaxial growth of Ge and SiGe on Si substrates”, Materials Science in Semiconductor Processing , 9, 454–459, 2006.
35. J.-S. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld,” Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Applied physics letters, 90, 052113, 2007.
36. Donghun Choi, Yangsi Ge, James S. Harris , Joel Cagnon and Susanne Stemmer,” Low surface roughness and threading dislocation density Ge growth on Si (0 01)”, Journal of Crystal Growth ,310, 4273–4279, 2008.
37. Weixuan Hu, Buwen Cheng, Chunlai Xue, Shaojian Su, Haiyun Xue, Yuhua Zuo and Qiming Wang,” Ge-on-Si for Si-based integrated materials and photonic devices”, Frontiers of Optoelectronics, 5, 41-50,2012.
38. Hyeon Deok Yang, Yeon-Ho Kil, Jong-Han Yang, Sukill Kang, Tae Soo Jeong, Chel-Jong Choi, Taek Sung Kim and Kyu-Hwan Shim,” Characterization of n-Ge/i-Ge/p-Si PIN photo-diode. Mater Sci in Semiconductor Process”, 22, 37-43, 2014.
39. Jian Wang and Sungjoo Lee,” Ge-Photodetectors for Si-Based Optoelectronic Integration”, Sens, 11, 696-718, 2011.
40. Papichaya Chaisakul, Delphine Marris-Morini, Jacopo Frigerio, Daniel Chrastina, Mohamed-Said Rouifed, Stefano Cecchi, Paul Crozat, Giovanni Isella and Laurent Vivien,” Integrated germanium optical interconnects on silicon substrates”, Nat Photonics, 8, 482-488, 2014.
41. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, ” 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells”, Appl Phys Lett, 90, 183516, 2007.
42. Asuhiko Ishikawa, Kazumi Wada, Douglas D. Cannon, Jifeng Liu, Hsin-Chiao Luan, and Lionel C. Kimerling, “ Strain-induced band gap shrinkage in Ge grown on Si substrate”, Appl Phys Lett, 82,2044, 2003.
43. YJifeng Liu, Rodolfo Camacho-Aguilera, Jonathan T. Bessette, Xiaochen Sun, Xiaoxin Wang, Yan Cai, Lionel C. Kimerling and Jurgen Michel,” Ge-on-Si optoelectronics”, Thin Solid Films, 520, 3354-3360, 2012.
44. M. Schmid, M. Kaschel, M. Gollhofer, M. Oehme, J. Werner, E. Kasper and J. Schulze,” Franz–Keldysh effect of germanium-on-silicon p-i-n diodes within a wide temperature range”, Thin Solid Films, 525, 110–114, 2012.
45. Jifeng Liu, Mark Beals, Andrew Pomerene, Sarah Bernardis, Rong Sun, Jing Cheng, Lionel C. Kimerling and Jurgen Michel,” Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators”, Nat Photonics, 2, 433-437, 2008.
46. M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist and H. Sigg,” Analysis of enhanced light emission from highly strained germanium microbridges”, Nat Photonics , 7, 466-472, 2013.
47. Zhiwen Zhou, Jingkai He, Ruichun Wang, Cheng Li and Jinzhong Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition”, Optics Communications, 283, 3404–3407, 2010.
48. Samerkhae Jongthammanurak, Jifeng Liu, Kazumi Wada, Douglas D. Cannon, David T. Danielson, Dong Pan, Lionel C. Kimerling, and Jurgen Michel,” Large electro-optic effect in tensile strained Ge-on-Si films”, Appl Phys Lett, 89, 161115, 2006.
49. Jifeng Liu, Douglas D. Cannon, Kazumi Wada, Yasuhiko Ishikawa, Samerkhae Jongthammanurak, David T. Danielson, Jurgen Michel, and Lionel C. Kimerling,” Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications”, Appl Phys Lett, 87, 011110, 2005.
50. Xiaochen Sun, Jifeng Liu, Lionel C. Kimerling, and Jurgen Michel,” Direct gap photoluminescence of n-type tensile-strained Ge-on-Si”, Appl Phys Lett, 95, 011911, 2005.
51. Katsuya Oda, Kazuki Tani, Shin-ichi Saito and Tatemi Ido,” Improvement of crystallinity by post-annealing and regrowth of Ge layers on Si substrates”, Thin Solid Films,550, 509-514, 2014.
52. K. Sawano, Y. Hoshi, S. Endoa, T. Nagashima, K. Arimoto, J. Yamanaka, K. Nakagawa, S. Yamada, K. Hamaya, M.Miyao and Y. Shiraki,” Formation of Ge(111) on Insulator by Ge epitaxy on Si(111) and layer transfer”, Thin Solid Films, 557,76-79, 2014.
53. Ziheng Liu, Xiaojing Hao, Anita Ho-Baillie, Chao-yang Tsao and Martin A. Green,” Cyclic thermal annealing on Ge/Si(100) epitaxial films grown by magnetron sputtering”, Thin Solid Films, 574:99, 102, 2015.
54. Andreas Grimm, Andreas Fissel, Eberhard Bugiel and Tobias F. Wietler,” In situ observation of low temperature growth of Ge on Si(1 1 1) by reflection high energy electron diffraction”, Appl Surf Sci, 370, 40-48, 2016.
55. T.K.P. Luong, A. Ghrib, M.T.Daua, M.A. Zrir, M. Stoffel, V. Le Thanha, R. Daineche, T.G. Le, V. Heresanu, O. Abbes, M. Petit, M. El Kurdi, P. Boucaud, H. Rinnert, J.Murota,” Molecular-beam epitaxial growth of tensile-strained and n-doped Ge/Si(001) films using a GaP decomposition source”, Thin Solid Films, 557, 70-75, 2014.
56. Teng-Hsiang Chang,Chiao Chang,Yen-Ho Chu,Chien-Chieh Lee,Jenq-Yang Chang,I-Chen Chen, and Tomi T. Li,” Low Temperature (180°C) Growth of Smooth Surface Germanium Epilayers on Silicon Substrates Using Electron Cyclotron Resonance Chemical Vapor Deposition”, International J of Photoenergy, 2014, 8, 2014.
57. Teng-Hsiang Chang, Yen-Ho Chu, Chien-Chieh Lee, and Jenq-Yang Chang,” Crystalline silicon interface passivation improvement with a-Si1−xCx:H and its application in hetero-junction solar cells with intrinsic layer”, Appl Phys Lett, 101, 241601, 2012.
58. Da Chen, Zhongying Xue, Xing Wei, Gang Wanga, Lin Yea, Miao Zhang, Dewang Wang and Su Liu,” Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (1 0 0) by RPCVD”, Appl Surf Sci, 299, 1-5, 2014.
59. D. Fahnline, B. Yanga1, K. Vedam, R. Messier and L. Pilione,” Intrinsic stress in a-germanium films deposited by RF-Magnetron sputtering. MRS Proceedings”, 130, 355, 1988.
60. John A. Thornton and D.W. Hoffman,” Stress-related effects in thin films”, Thin Solid Films, 171, 5-31, 1989.
61. Vito Sorianello, Lorenzo Colace, Nicola Armani, Francesca Rossi, Claudio Ferrari, Laura Lazzarini, and Gaetano Assanto,” Low-temperature germanium thin films on silicon. Optical Mater Express”,1, 856, 2011.
62. Malek Tabbal, Taegon Kim, David N. Woolf, Byungha Shin and Michael J. Aziz,” Fabrication and sub-band-gap absorption of single-crystal Si supersaturated with Se by pulsed laser mixing”, Appl Phys A,98, 589–594, 2010.
63. Vinh Le Thanh,” New insight into the kinetics of Stranski–Krastanow growth of Ge on Si(0 0 1)”, Surf Sci , 492, 255-269, 2001.
64. J. Liu, R. C. Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, J. Michel,” Ge on optoelectronics. Thin Solid Films, 520, 3354–3360, 2012.
65. Tsao C-Y, Huang J, Hao X, Campbell P, Green MA,” Formation of heavily boron-doped hydrogenated polycrystalline germanium thin films by co-sputtering for developing p+ emitters of bottom cells”, Solar Energy Materials and Solar Cells, 95, 981–5, 2011.
66. Hu W, Cheng B, Xue C, Su S, Xue H, Zuo Y, et al,” Ge-on-Si for Si-based integrated materials and photonic devices”, Frontiers of Optoelectronics, 5, 41–50, 2012.
67. Moreno M, Delgadillo N, Torres A, Ambrosio R, Rosales P, Kosarev A,” Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications”, Thin Solid Films, 548, 533–8, 2013.
68. Shah VA, Dobbie A, Myronov M, Leadley DR,” High quality relaxed Ge layers grown directly on a Si(001) substrate”, Solid-State Electronics, 62, 189–94, 2011.
69. Kil Y-H, Yuk S-H, Kim JH, Kim TS, Kim YT, Choi C-J,” The low temperature epitaxy of Ge on Si (100) substrate using two different precursors of GeH4 and Ge2H6”, Solid-State Electronics,124, 35-41, 2016.
70. Aubin J, Hartmann JM, Veillerot M, Essa Z, Sermage B,” Very low temperature (450 °C) selective epitaxial growth of heavilyin situboron-doped SiGe layers”, Semiconductor Science and Technology, 30, 115006, 2015.
71. Chang T-H, Chang C, Chu Y-H, Lee C-C, Chang J-Y, Chen I-C,” Low temperature growth of highly conductive boron-doped germanium thin films by electron cyclotron resonance chemical vapor deposition”, Thin Solid Films, 551, 53–6, 2014.
72. Bogumilowicz Y, Hartmann JM,” Reduced-pressure chemical vapor deposition of boron-doped Si and Ge layers”,Thin Solid Films, 557, 4–9, 2014.
73. Byun KY, Colinge C,” Overview of low temperature hydrophilic Ge to Si direct bonding for heterogeneous integration”, Microelectronics Reliability, 52, 325–30, 2012.
74. Sorianello V, Colace L, Assanto G, Notargiacomo A, Armani N, Rossi F,” Thermal evaporation of Ge on Si for near infrared detectors: Material and device characterization”, Microelectronic Engineering, 88, 526–529, 2011.
75. Bandaru PR, Sahni S, Yablonovitch E, Liu J, Kim H-J, Xie Y-H,” Fabrication and characterization of low temperature (<450°C) grown p-ge/n-si photodetectors for silicon based photonics”, Materials Science and Engineering: B, 113, 79–84, 2004.
76. Grzybowski G, Jiang L, Beeler RT, Watkins T, Chizmeshya AVG, Xu C,” Ultra-low-temperature Epitaxy of Ge-based semiconductors and Optoelectronic structures on Si(100): Introducing higher order Germanes (Ge3H8 , Ge4H10 )”, Chemistry of Materials, 24, 1619–28, 2012.
77. Chang T-H, Chang C, Chu Y-H, Lee C-C, Chang J-Y, Chen I-C,” Low temperature (180°C) growth of smooth surface germanium Epilayers on silicon substrates using electron Cyclotron resonance chemical vapor deposition”, International Journal of Photoenergy, 2014, 1–8, 2014.
78. Chang T-H, Chu Y-H, Lee C-C, Chang J-Y,” Crystalline silicon interface passivation improvement with a-si1-xCx: H and its application in hetero-junction solar cells with intrinsic layer”, Applied Physics Letters, 101, 241601, 2012.
79. Zhang L, Zhang J, Zhang X, Cao Y, Zhao Y,” Active roles of helium in the growth of hydrogenated microcrystalline silicon germanium thin films”, Thin Solid Films, 520, 5940–5, 2012.
80. Fukuda Y, Sakuma Y, Fukai C, Fujimura Y, Azuma K, Shirai H,” Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, 386, 256–60, 2001.
81. Yanovsky AS, Kolomoets SV,” Hydrogen interaction with Si and Ge surface clusters”, Vacuum , 54, 47–51, 1999.
82. Rivillon S, Chabal YJ, Amy F, Kahn A,” Hydrogen passivation of germanium (100) surface using wet chemical preparation”, Applied Physics Letters,; 87, 253101, 2005.
83. Gozzo FC, Eberlin MN, Chambouleyron I,” Ab initio calculations of a vacancy in a Ge nano-cluster and its passivation with atomic and molecular hydrogen”, Journal of Non-Crystalline Solids, 299-302, 174–178, 2002.
84. Bermejo D, Cardona M,” Infrared absorption in hydrogenated amorphous and crystallized germanium”, Journal of Non-Crystalline Solids, 32, 421–30, 1979.
85. Vikram L. Dalal, Kamal Muthukrishnan, Xuejun Niu, Daniel Stieler,” Growth chemistry of nanocrystalline silicon and germanium films”, Journal of Non-Crystalline Solids, 352, 892-895, 2006.
86. Ohmachi Y, Nishioka T, Shinoda Y,” The heteroepitaxy of Ge on Si(100) by vacuum evaporation”, Journal of Applied Physics, 54, 5466, 1983.
87. Martin Diaz, Li Wang Dun Li, Xin Zhao, Brianna Conrad, Anasasia Soeriyadi, Andrew Gerger, Anthony Lochtefeld, Chris Ebert, Robert Opila, Ivan Perez-Wurfl, Allen Barnett”, Tandem GaAsP/SiGe on Si solar cells”, Sol. Energy Mater. Sol. Cells, 143, 113–119, 2015.
88. Kenneth J. Schmieder,1,n, Andrew Gerger, Martin Diaz, Ziggy Pulwin, Michael Curtin, Li Wang, Chris Ebert, Anthony Lochtefeld, Robert L. Opila, Allen Barnett,” GaAsP on SiGe/Si material quality improvements with in-situ stress sensor and resulting tandem device performance”, Mater. Sci. Semicond. Process, 39, 614–620, 2015.
89. Karen Derendorf, Stephanie Essig, Eduard Oliva, Vera Klinger, Tobias Roesener, Simon P. Philipps, Jan Benick, Martin Hermle, Michael Schachtner, Gerald Siefer, Wolfgang Jager, and Frank Dimroth,” Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding”, IEEE J.Photovolt, 3, 1423-1428, 2013.
90. C. Andre, J. Boeckl, D. Wilt, A. Pitera, M. Lee, E. Fitzgerald, B. Keyes, S. Ringel,” Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates”, Appl. Phys. Lett., 84 18, 2004.
91. Carrie L. Andre, John A. Carlin, John J. Boeckl, David M. Wilt, M. A. Smith, A. J. Pitera, M. L. Lee, Eugene A. Fitzgerald,” Investigations of high-performance GaAs solar Cells grown on Ge-Si1-xGex-Si substrates”, IEEE Trans. Electron Devices, 52, 6, 2005.
92. M. R. Lueck, C. L. Andre, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel,” Dual junction GaInP/GaAs Solar Cells grown on metamorphic SiGe/Si substrates with high open circuit voltage”, IEEE Electron device Lett., 27 3, 2006.
93. M.Khizar and M. Yasin Akhtar Raja,” Design and development of high efficiency solar cells using thin film GaAs on nanostructured silicon”, 8th International Conference on High-capacity Optical Networks and Emerging Technologies, Riyadh, December, 2011.
94. R. Ichikawa, S. Takita, Y. Ishikawa, and K. Wada,” Germanium as a material to enable silicon photonics”, Silicon Photonics II, pp 131-141, 2011.
95. J. Faucher, A. Gerger, S. Tomasulo, C. Ebert, A. Lochtefeld, A. Barnett and M. L. Lee,” Single-junction GaAsP solar cells grown on SiGe graded buffers on Si”, Appl. Phys. Lett., 103, 191901, 2013.
96. G. E. Jellison, Jr. and F. A. Modine,” Parameterization of the optical functions of amorphous materials in the interband region”, Appl. Phys. Lett., 69, 3, 1996.
97. A. Fontcuberta i Morral and P. Roca I Cabarrocas,” Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements”, Phydical Review B, 69, 125307, 2004.
98. Bernhard von Blanckenhagen, Diana Tonova, and Jens Ullmann,” Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements”, Appl. Optics, 41, 16, 2002.
99. D.A.G.Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen”, Annalen der Physik, 416, 7 1935.
100. A.S. Yanovsky, S.V. Kolomoets,” Hydrogen interaction with Si and Ge surface clusters”, Vacuum 54, 47-51, 1999.
101. F.C. Gozzo, M.N. Eberlin, I. Chambouleyron,” Ab initio calculations of a vacancy in a Ge nano-cluster and its passivation with atomic and molecular hydrogen”, J. Non-Cryst. Solids, 299-302, 174-178, 2002.
102. Dionisio Bermejo and Manuel Cardona,” Infrared absorption in hydrogenated amorphous and crystallized germanium”, J. Non-Cryst. Solids, 32, 421-430, 1979.
103. Tsutomu Sakata, Katsunori Makihara, Hidenori Deki, Seiichiro Higashi, Seiichi Miyazaki,” Low temperature high-rate growth of crystalline Ge films on quartz and crystalline Si substrates from VHF inductively-coupled plasma of GeH4”, Thin Solid. Films, 517, 216–218, 2008.
104. Zeguo Tang, Wenbin Wang, Desheng Wang, Dequan Liu, Qiming Liu, Deyan He,” The influence of H2/Ar ratio on Ge content of the μc-SiGe:H films deposited by PECVD”, J.Alloy.Compd, 504, 403–406, 2010.
105. Kai Ma, Ryohei Urata, David A. B. Miller, and James S. Harris,” Low-Temperature Growth of GaAs on Si Used for Ultrafast Photoconductive Switches”, IEEE J. Quantum Electron, 40, 6, 2004.
106. H. Tanoto, S. F. Yoon, W. K. Loke, K. P. Chen, E. A. Fitzgerald, C. Dohrman, and B. Narayanan,” Heteroepitaxial growth of GaAs on (100) Ge/Si using migration enhanced epitaxy”, J.Appl.Phys, 103, 104901, 2008.
107. Donghun Choi, James S. Harris , Eunji Kim, Paul C. McIntyre, Joel Cagnon, Susanne Stemmer,” High-quality III–V semiconductor MBE growth on Ge/Si virtual substrates for metal-oxide-semiconductor device fabrication”, J. Crys. Growth, 311, 1962–1971, 2009.
108. Bert Stegemann, Karim M. Gad, Patrice Balamou, Daniel Sixtensson,Daniel Vössing, Martin Kasemann, Heike Angermann, “Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO2/Si interfaces with low defect densities”, Applied Surface Science, 33460, 8, 2016.
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2017-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明