博碩士論文 104329003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:117 、訪客IP:3.21.100.117
姓名 周百鴻(Pai-Hung Chou)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 藉由熱處理促進碳支撐之鈀及鈀基奈米顆粒之甲酸氧化反應
(Promotion of Formic Acid Oxidation Performance of Carbon-Supported Pd and Pd-based Nanoparticles by Heat Treatment)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在質子交換膜燃料電池(polymer electrolyte membrane fuel cells, PEMFCs)中,甲酸由於具有高能量密度及低燃料滲透質子交換膜的特性(crossover),而被使用為陽極端。其中,低鉑含量的鉑鈀二元合金觸媒因其對甲酸氧化反應(formic acid oxidation reaction, FAO)具有優異的催化活性,而備受矚目。在本研究中,製備碳支撐之鈀,二元鉑鈀和三元鉑鈀釕觸媒,並將鉑鈀及鉑鈀釕觸媒做熱處理後,探討表面組成變遷及觸媒電化學性能之間的關係。所製備觸媒之晶體結構、表面組成、化學組成、形貌和電化學特性分別使用X光繞射儀(X-ray diffraction, XRD)、X光電子能譜(X-ray photoelectron spectroscopy, XPS)、感應耦合電漿放射光譜分析儀(inductively coupled plasma-optical emission spectrometer, ICP-OES)、高解析度穿透式電子顯微鏡(high resolution transmission electron microscopy, HRTEM)和旋轉盤電極(rotating disc electrode, RDE)等儀器做分析。
本研究分成兩部分。在第一部分中,碳支撐之鈀,鉑鈀和鉑鈀釕觸媒被製備於相同的還原條件中。X光電子能譜及一氧化碳剝除實驗(CO stripping)的結果顯示了低含量的鉑存在於鉑鈀及鉑鈀釕觸媒的表面,且相較於純鈀觸媒,添加鉑到鈀上展示了較優越的FAO催化活性,而釕的添加更進一步強化了觸媒對CO毒化的抗性。此外,純鈀觸媒之FAO電流前後掃比值(If/Ib ratio)要高於其他兩者,可歸因於鉑的添加,因其在前掃時的低電位範圍極易被CO毒化。
第二部分,鉑鈀及鉑鈀釕觸媒各自分別於CO及O2氣氛進行熱處理。由X光繞射儀、X光電子能譜及電化學的分析,可描述了觸媒在熱處理過程中的表面組成變化,及其與催化性能之間的關係。表面鉑的含量與FAO性能表現高度相關,鉑鈀及鉑鈀釕觸媒經過O2處理後,其活性雖然上升,但經過計時電流法(chronoamperometric, CA)測試後的電流值皆展現了極低的數值,說明氧氣熱處理有助於提升活性,但卻無益於穩定性。相反的,鉑鈀及鉑鈀釕經過CO熱處理後產生表面物種還原及鉑偏析,CA之後之電流明顯提升,特別是在三元合金系統內。
摘要(英)
In order to promote energy density and overcome the fuel crossover on the membrane, formic acid is considered to be an attractive fuel at the anode of polymer electrolyte membrane fuel cells (PEMFCs). Besides, the low Pt content PtPd bimetallic catalysts have been investigated due to their high catalytic activity of formic acid oxidation reaction (FAO). In this study, the carbon-supported Pd, PdPt and PdRuPt have been prepared and PdPt, PdRuPt have been heat-treated. The relationship between their surface compositions and electrochemical properties is elucidated. The lattice structures, surface compositions, chemical compositions, morphologies and electrochemical properties of prepared catalysts are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometer (ICP-OES), high resolution transmission electron microscopy (HRTEM), and rotating disc electrode (RDE), respectively.
This study is divided into two parts. In the first part, carbon-supported Pd, PdPt and PdRuPt nanoparticles have been prepared at the same reduction condition. The XPS and CO stripping results reveal the small amount of Pt coverage on the surface of PdPt and PdRuPt. The addition of Pt into Pd catalysts have demonstrated great promotion of FAO performance compared to Pd/C, and Ru addition further enhances the CO tolerance of catalysts. Besides, the ratio between forward and backward peak current (If/Ib) of Pd is much higher than those of PdPt and PdRuPt, due to CO poisoning at low potential during forward scan of surface Pt.
In the second part, carbon-supported PdPt and PdRuPt catalysts have been heat-treated under CO and O2 atmosphere. Based on the analysis of the XRD, XPS and electrochemical measurement, the change of surface composition during heat treatment, and the correlation between surface composition and catalytic properties of PdPt and PdRuPt catalysts is methodically elucidated. The amounts of surface Pt is related to FAO performance. O2 heat treatment can promote the FAO performance but does not have positive effect on their stability based on the chronoamperometric (CA) results. On the other side, owing to the Pt surface segregation and reduction by CO heat treatment, the mass activity (MA) after CA tests is enhanced, especially for the ternary one.
關鍵字(中) ★ 鉑鈀
★ 鉑鈀釕
★ X光電子能譜
★ 甲酸氧化反應
★ 計時電流法
★ 表面組成
★ 熱處理
關鍵字(英) ★ PdPt
★ PdRuPt catalysts
★ X-ray photoelectron spectroscopy (XPS)
★ formic acid oxidation reaction (FAO)
★ chronoamperometric (CA)
★ surface composition
★ heat treatment
論文目次
Table of Contents
摘要 i
Abstract iii
致謝 ..……………………………………………………………………v
Table of Contents vii
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Mechanism of FAO 2
1.2 The PtPd bimetallic catalysts 4
1.3 Ru decorated catalysts 8
1.4 The effect of heat treatment 10
1.5 Motivation and approach 12
Chapter 2 Experimental Section 13
2.1 Chemicals and materials…………………………………………....13
2.2 Preparation of catalysts 15
2.3 Heat treatment of the catalysts 19
2.4 Characterization of catalysts 21
2.4.1 Inductively coupled plasma – optical emission spectroscopy (ICP-OES) 21
2.4.2 X-ray photoelectron spectroscopy (XPS) 21
2.4.3 X-ray diffraction (XRD) 21
2.4.4 High resolution transmission electron microscopy (HRTEM) 23
2.4.5 Cyclic voltammograms (CV) 23
2.4.6 Linear sweep voltammetry (LSV) 23
2.4.7 Chronoamperometric (CA) 24
2.4.8 CO stripping tests 24
Chapter 3 Results and Discussion 25
3.1 The structural and electrochemical characterizations of carbon-supported Pd, PdPt and PdRuPt catalysts. 25
3.1.1 ICP and HRTEM characterizations 25
3.1.2 XRD characterization 25
3.1.3 XPS characterization 29
3.1.4 CO-stripping characterization 31
3.1.5 CV characterization 31
3.1.6 LSV and CA characterizations 34
3.1.7 Summary 38
3.2 The structural and electrochemical characterizations of carbon-supported PdPt and PdRuPt catalysts after heat treatments. 39
3.2.1 XRD characterization 39
3.2.2 HRTEM characterization 39
3.2.3 XPS characterizations 43
3.2.4 CO stripping characterizations 45
3.2.5 CV characterization 47
3.2.6 LSV and CA characterizations 49
3.2.7 Summary 52
Conclusions 55
References 57
參考文獻

References
[1] J. R. Varcoe and R. C. T. Slade, Fuel Cells 5 (2005) 187-200.
[2] H. Zhang and P. K. Shen, Chem. Soc. Rev. 41 (2012) 2382-2394.
[3] J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu, and L. Zhuang, Energy Environ. Sci. 7 (2014) 3135-3191.
[4] C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, and T. Barnard, J. Power Sources 111 (2002) 83-89.
[5] X. Wang, J. M. Hu, and I. M. Hsing, J. Electroanal. Chem. 562 (2004) 73-80.
[6] S. Uhm, H. J. Lee, and J. Lee, Phys. Chem. Chem. Phys. 11 (2009) 9326-9336.
[7] C. Rice, S. Ha, R. I. Masel, and A. Wieckowski, J. Power Sources 115 (2003) 229-235.
[8] K. Jiang, H. X. Zhang, S. Zou, and W. B. Cai, Phys. Chem. Chem. Phys. 14 (2014) 20360-20376.
[9] X. Yu and P. G. Pickup, J. Power Sources 182 (2008) 124-132.
[10] C. Wang, B. Peng, H. N. Xie, H. X. Zhang, F. F. Shi, and W. B. Cai, J. Phys. Chem. C 113 (2009) 13841-13846.
[11] H. X. Zhang, C. Wang, J. Y. Wang, J. J. Zhai, and W. B. Cai, J. Phys. Chem. C 114 (2010) 6446-6451.
[12] H. Gao, S. Liao, J. Zeng, Y. Xie, and D. Dang, Electrochim. Acta 56 (2011) 2024-2030.
[13] X. Li and I. M. Hsing, Electrochim. Acta 52 (2006) 1358-1365.
[14] Y. X. Chen, M. Heinen, Z. Jusys, and R. J. Behm, Langmuir 22 (2006) 10399-10408.
[15] G. Samjeske, A. Miki, S. Ye, and M. Osawa, J. Phys. Chem. B 110 (2006) 16559-16566.
[16] M. Neurock, M. Janik, and A. Wieckowski, Farad. Discuss 140 (2009) 363-378.
[17] Y. Kang, and C. B. Murray , Encyclopedia of Applied Electrochemistry (2014) 895-901.
[18] S. G. Sun, J. Clavilier, and A. Bewick, J. Electroanal. Chem. 240 (1988) 147-159.
[19] J. Y. Wang, H. X. Zhang, K. Jiang, and W. B. Cai, J. Am. Chem. Soc. 133 (2011) 14876-14879.
[20] H. X. Zhang, S. H. Wang, K. Jiang, T. Andre, and W. B. Cai, J. Power Sources 199 (2012) 165-169.
[21] B. Liu, H. Y. Li, L. Die, X. H. Zhang, Z. Fan, and J. H. Chen, J. Power Sources 186 (2009) 62-66.
[22] L. A. Kibler, A. M. El-Aziz, R. Hoyer, and D. M. Kolb, Angew. Chem. Int. Ed. 44 (2005) 2080-2084.
[23] N. Kristian, Y. Yanb, and X. Wang, Chem. Commun. 14 (2008) 353-355.
[24] U. B. Demirci, J. Power Sources 173 (2007) 11-18.
[25] L. Yang, M. B. Vukmirovic, D. Su, K. Sasaki, J. A. Herron, M. Mavrikakis, S. Liao, and R. R. Adzic, J. Phys. Chem. C 117 (2013) 1748-1753.
[26] B. Jiang, H. A. Esfahani, C. Li, S. M. Alshehri, T. Ahamad, J. Henzie, and Y. Yamauchi, Chem. Eur. J. 22 (2016) 1-6.
[27] S. S. John, R. W. Atkinson, K. A. Unocic, R. R. Unocic, T. A. Zawodzinski, and A. B. Papandrew, ACS Catal. 5 (2015) 7015-7023.
[28] M. Xiao, L. Feng, J. Zhu, C. Liu, and W. Xing, Nanoscale 7 (2015) 9467-9471.
[29] R. Awasthi and R. N. Singh, Carbon 51 (2013) 282-289.
[30] Y. Lu and W. Chen, Chem. Commun. 47 (2011) 2541-2543.
[31] J. Jiang, and A. Kucernak, J. Electroanal. Chem. 630 (2009) 10-18.
[32] C. Roth, N. Benker, R. Theissmann, R. J. Nichols, and D. J. Schiffrin, Langmuir 24 (2008) 2191-2199.
[33] Z. He, J. Chen, D. Liu, H. Zhou, and Y. Kuang, Diamond Relat. Mater. 13 (2004) 1764-1770.
[34] H. Cheng, W. Yuan, and K. Scott, Fuel Cells 7 (2007) 16-20.
[35] M. Nie, P. K. Shen, M. Wu, Z. Wei, and H. Meng, J. Power Sources 162 (2006) 173-176.
[36] Z. F. Ma, X. Y. Xie, X. X. Ma, D. Y. Zhang, Q. Ren, N. H. Mohr, and V. M. Schmidt, Electrochem. Commun. 8 (2006) 389-394.
[37] N. A. Savastenko , V. Brüser, M. Brüser, K. Anklam, S. Kutschera, H. Steffen, and A. Schmuhl, J. Power Sources 165 (2007) 24-33.
[38] H. Shioyama , K. Honjo, M. Kiuchi, Y. Yamada, A. Ueda, N. Kuriyama, and T. Kobayashi, J. Power Sources 161 (2006) 836-838.
[39] H. Liu, C. Song, Y. Tang, and J. Zhang, Electrochim. Acta 52 (2007) 4532-4538.
[40] M. Tsypkin, J. L. G. de la Fuente, S. G. Rodríguez, Y. Yu, P. Ochal, F. Seland, O. Safonova, N. Muthuswamy, M. Rønning, D. Chen, and S. Sunde, J. Electroanal. Chem. 704 (2013) 57-66.
[41] E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, and C. M. Lukehart, J. Phys. Chem. B 105 (2001) 8097-8101.
[42] M. Wakisaka, S. Mitsui, Y Hirose, K. Kawashima, H. Uchida, and M. Watanabe, J. Phys. Chem. B 110 (2006) 23489-23496.
[43] M. A. Matin, J. H. Jang, and Y. U. Kwon, J. Power Sources 262 (2014) 356-363.
[44] Z. Zhang, J. Ge, L. Ma, J. Liao, T. Lu, and W. Xing, Fuel Cells 9 (2009) 114-120.
[45] X. Yu, and P. G. Pickup, Electrochem. Commun. 11 (2009) 2012-2014.
[46] P. K. Babu, H. S. Kim, J. H. Chung, E. Oldfield, and A. Wiekowski, J. Phys. Chem. B 108 (2004) 20228-20232.
[47] A. C. Garcia, V. A. Paganin, and E. A. Ticianelli, Electrochim. Acta 53 (2008) 4309-4315.
[48] F. Colmati Jr, W. H. Lizcano-Valbuena, G. A. Camara, E. A. Ticianelli, and E. R. Gonzalez, J. Braz. Chem. Soc. 13 (2002) 474-482.
[49] B. Gralec and A. Lewera, Appl. Catal. B Environ 192 (2016) 304-310.
[50] W. Chen, L. P. Xu, and S. Chen, J. Electroanal. Chem. 631 (2009) 36-42.
[51] T. Frelink, W. Visscher, A. P. Cox, and J. A. R. V. Veen, Electrochim. Acta 40 (1995) 1537-1543.
[52] E. Antolini, Mater. Chem. Phys. 78 (2003) 563-573.
[53] E. Antolini, F. Cardellini, J. Alloy. Comp. 315 (2001) 118-122.
[54] K. G. Nishanth, P. Sridhar, and S. Pitchumani, Int. J. Hydrogen Energy 38 (2013) 612-619.
[55] T. Saida, N. Ogiwara, Y. Takasu, and W. Sugimoto, J. Phy. Chem. C 114 (2010) 13390-13396.
[56] J. Cruickshank and K. Scott, J. Power Sources 70 (1998) 40-47.
[57] M. Watanabe, M. Uchida, and S. Motoo, J. Electroanal. Chem. 229 (1987) 395-406.
[58] Z. Liu, X. Zhang, and S. W. Tay, J. Solid. State. Electrochem. 16 (2012) 545-550.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2017-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明