博碩士論文 104329021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.227.102.0
姓名 林子渝(Tzu-Yu Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鎵奈米顆粒於彈性體基板上之光學性質可調度探討
(Investigation of tunable optical properties of gallium nanoparticles on elastomer substrates)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近幾年來可撓式基板與電漿子學受到廣泛的關注,對於電漿子光學來說,其光學性質都可以藉由改變奈米結構與材料本身之幾何形狀、結構大小、週期性排列方式等而加以操控,新興材料鎵奈米顆粒的正在發展,有希望成為新穎材料。而本篇論文主要是探討挑選合適的高分子彈性體基板,並藉由軟微影技術將鎵奈米顆粒轉移至彈性體基板上(PDMS),通過彈性體擁有可調性的獨特性質,利用不同拉伸應力來調整奈米顆粒間的間距,透過紫外-可見光光譜儀的量測,最終可以得知隨著奈米顆粒於彈性體基板的拉伸應力從0%增加到40%,反射特徵峰會從571 nm位移至528 nm,產生藍位移之光學特性,而吸收強度從48%上升至62%,與其他金屬產生不一樣的特性,因此推測為鎵奈米顆粒之光學性質,隨著拉伸應力增加至40%時,耦合強度會快速減弱,緣由於顆粒的間距增加而產生此特性。
摘要(英) In recent years, great interest has arisen in flexible substrate and plasmonic. Additionally, gallium has emerged as a promising new material for plasmonics among a growing family of novel materials. This dissertation aims to explore that choose a suitable polymer elastomer substrate and gallium nanoparticles transfer to elastomer substrate by soft lithography, because the elastomer (PDMS) has unique tenability, control spacing between nanoparticles via alter the elastomer strain ratio. We use UV-Visible spectrometer to analyze optical properties. Finally, it can be seen that with the tensile stress of the nanoparticles on the elastomer substrate increasing from 0% to 40%, the reflection characteristic peak shifted from 571 nm to 528 nm, resulting in the optical properties of the blue shift, and the absorption intensity increased from 48% To 62%, and other metals have not the same characteristics, it is speculated that the optical properties of gallium. As the tensile stress increases to 40%, the coupling strength decreases rapidly, resulting in an increase in the spacing of the particles.
關鍵字(中) ★ 鎵奈米顆粒
★ 電漿子共振
★ 聚二甲基矽氧烷彈性體
關鍵字(英) ★ Gallium
★ plasmonic
★ PDMS
論文目次 目錄
摘要 I
Abstract II
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1前言 1
1-2研究背景 3
第二章 文獻回顧 6
2-1 概論 6
2-2 新穎基板的開發與應用 9
2-2-1 可撓式基板 9
2-2-2 聚二甲基矽氧烷(PDMS) 13
2-3鎵(Gallium) 15
2-4 電漿子學 17
2-4-1電漿子學的發展 17
2-4-2奈米顆粒之表面電漿共振 17
2-4-3 影響電漿子共振之行為 20
2-4-4 各種奈米結構對表面電漿共振之影響 21
2-5 軟微影轉印技術 23
第三章 研究方法 26
3-1研究動機 26
3-2實驗流程與架構 26
3-3 彈性體基板之選用 28
第四章 結果探討 30
4-1轉印技術的開發 30
4-1-1 彈性體之最大拉伸應力 30
4-1-2 基板選用之探討 31
4-1-3 軟微影 32
4-2 光學性質探討 35
4-2-1 尺寸對於奈米顆粒之光學特性 35
4-2-2 奈米顆粒之吸收可調度分析 38
4-2-3 奈米顆粒之可調度分析 43
第五章 結論 53
參考文獻 54
參考文獻
[1] S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah,M. R. Dokmeci , and H. Altug, Adv. Mater., 23, (2011).
[2] B. Leea, I. M. Leea, S. Kima, D. H. Oha and L H. link, Journal of Modern Optics , 57, 1479, (2010).
[3] U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umetonb and T. Burgi, J. Mater. Chem. C, 2, 7927, (2014).
[4] G. Niklasson, C. Granqvist, J. Mater. Sci., 18, 3475, (1983).
[5] P. Sciau, A. A. Hashim, The Delivery of Nanoparticles, 1, (2012)
[6] L. Polavarapua, M. Luis, L. Marza´n, Chem. Phys., 15, 5288, (2013).
[7] M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marqu´es, and Y. Kivshar Appl. Phys. Lett., 95, 084105, (2009).
[8] M. S. Bar, H. Haick, Nano., 7, 8366, (2013).
[9] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Chem Rev., 111, 3669, (2011).
[10] W. A. Murray, W. L. Barnes, Adv. Mater., 19, 3771, (2007).
[11] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nat. Mater., 7, 442, (2008).
[12] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. J. Schultz, Chem. Phys., 116, 6755, (2002).
[13] C. J. Heo, S. H. Kim, S. G. Jang, S. Y. Lee, S. M. Yang, Adv. Mater., 21, 1726, (2009).
[14] J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, N. J. Halas, Nano Lett., 12, 1660, (2012).
[15] A. Di Falco, M. Ploschner, T. F. Krauss, J. New, Phys., 12, 113006, (2010).
[16] H. Kang, C. J. Heo, H. C. Jeon, S. Y. Lee, and S. M. Yang, Appl. Mater. Interfaces, 11, 4569, (2013).
[17] J. Y. Kim , K. Lee , N. E. Coates , D. Moses , T. Q. Nguyen , M. Dante , A. J. Heeger, Science, 31 , 222, (2007).
[18] S. I. Na , S. S. Kim , J. Jo , D. Y. Kim, Adv. Mater., 20, 4061, (2008).
[19] S. H. Park , Y. Jin , J. Y. Kim , S. H. Kim , J. Kim , H. Suh , K. Lee, Adv.Funct. Mater., 17, 3063, (2007).
[20] T. W. Lee , Y. Byun , B. W. Koo , I. N. Kang , Y. Y. Lyu , C. H. Lee , L. Pu ,
S. Y. Lee , Adv. Mater., 17, 2180, (2005).
[21] V. Cannella, M. Izu, S. Jones, S. Wagner, I. C. Cheng, SID Information, (2005).
[22] Y. Ji , B. Cho , S. Song , T. W. Kim , M. Choe , Y. H. Kahng , and T. Lee, Adv. Mater., 22, 3071, (2010).
[23] J. S. Park, T. W. Kim, D. Stryakhilev, J. S. Lee, S. G. An, Y. S. Pyo, D. B. Lee, Y. G. Mo, D. U. Jin, and H. K. Chung, Appl. Phys. Lett., 95, 013503, (2009).
[24] M. G. Kang , H. J. Park, S. H. Ahn, L. J. Guo, Solar Energy Materials & Solar Cells, 94, 1179, (2010).
[25] L. Polavarapua and L. M. L. Marza´n, Phys. Chem., 15, 5288, (2013).
[26] J. Lee, P. Lee, H. Lee, D. Lee, S. S. Leea and S. H.n Ko, Nanoscale, 4, 6408, (2012).
[27] D. S. Hecht, L. Hu and G. Irvin, Adv. Mater., 23, 1482, (2011).
[28] J. Bowen, D. Cheneler, A. P. G. Robinson, Microelectronic Engineering, 97, 34, (2012). 
[29] S. C. B. Mannsfeld, Nature Mater., 9, 859, (2010).
[30] J. C. Lotters, W. Olthuis, P. H. Veltink, P. Bergveld, J. Micromech. Microeng., 7, 45, (1997).
[31] F. Schneider, J. Draheim, R. Kamberger, U. Wallrabe, Physical, 151, 95, (2009).
[32] ABCR Research Chemicals and Metals Catalogue Karlsruhe, Germany, (1994)
[33] N. Tiercelin, P. Coquet, R. Sauleau, V. Senez, H. Fujita1, J. Micromech. Microeng., 16, 2389, (2006).
[34] X. F. Li, G. T. Fei, X. M. Chen, Y. Zhang, K. Zheng, X. L. Liu and L. D. Zhang EPL (Europhysics Letters), 94, 1, (2011).
[35] J. M. McMahon, G. C. Schatz, S. K. Gray, Phys. Chem. Chem. Phys., 15, 5415, (2013).
[36] G. V. Naik, V. M. Shalaev, A. Boltasseva, Adv. Mater., 25, 3264, (2013).
[37] R. R. Moskalyk, Miner. Eng., 16, 921, (2003).
[38] M. W. Knight, T. Coenen, Y. Yang, B.J. M. Brenny, M. Losurdo,A.S. Brown, S. H. Everitt, AACS Nano, 9(2), 2049, (2015).
[39] R. W. Wood, Philos. Mag. 4, 396, (1902).
[40] U. Fano, J. Opt. Soc. Am., 31, 213, (1941).
[41] A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275, (1965).
[42] K. A. Willets,V. Duyne, R. P. Ann., ReV. Phys. Chem., 58, 267, (2006).
[43] S. A. Maier, H. A. Atwater, J. Appl. Phys., 98, (2005).
[44] K. A. Willets,. R. P. R.. Duyne, Rev. Phys. Chem., 58, 267, (2007),.
[45] P. K. Jain and M. A. E. Sayed, Nano Letters, 8, 4347, (2008).
[46] S. Link, M. A. E-Sayed, J. Phys. Chem. B, 103, 4212, (1999).
[47] U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, 25, (1995).
[48] R. H. J. Doremus, Chem. Phys., 40, 2389, (1964).
[49] I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, Nano Lett., 10, 4222, (2010).
[50] P. V. Duyne, Nature Mater., 7, 442, (2008).
[51] A. M. Matthew, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. G. Y. Huang, I. Adesida, R. G. Nuzzo, J. A. Rogers, nature materials, 5, (2006).
[52] I. Byun, A. WColeman and B. Kim, J. Micromech. Microeng., 23, 085016, (2013).
[53] M. K. Chaudhury, J. A. Finlay, J. Y. Chung, M. E. Callow & J. A. Callow Biofouling, 21, 41, (2005).
[54] Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, Opt. Mater. Express, 1, 151, (2011).
[55] F. Miyamaru, M. W. Takeda, and K. Taima, Appl. Phys. Express, 2, 042001, (2009).
[56] T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, Appl. Phys. Lett., 99, 151115, (2011).
[57] Y. K. Choi1, O. Yarimaga1, T. W. Kim, Y. K. Jung, H. G. Park, (2008). http://www.goodfellowusa.com/larger-quantities/polymers/tpx-characteristics/
[58] M. K. Chaudhury, J. A. Finlay, J. Y. Chung, M. E. Callow & J. A. Callow Biofouling, 21, 41, (2005).
[59] O. Graudejus, P. Go¨rrn, and S. Wagner, ACS applied materials, 2, 1927, (2010).
[60] O. Akogwua, D. Kwabi, S. Midturib, M. Eleruja, B. Babatoped, W.O. Soboyejo, Materials Science and Engineering B, 170, 32, (2010).
[61] M .Losurdo, A. Suvorova, S. Rubanov, K. Hinger4 and A. S. Brown, Nature Materials, 15, 995, (2016).
[62] V. Ommen, A. H. Di, J. Appl. Phys., 57, 1872, (1985).
[63] M. A. Correa-Duarte, V. Salgueiriño-Maceira, A. Rinaldi, K. Sieradzki , M. Giersig, L. M. Liz-Marzán, Gold Bulletin, 40, Issue 1, (2007)
[64] M. G. Millyard, F. M. Huang, R. White, E. Spigone, J. Kivioja and J. J. Baumberg, Appl. Phys. Lett., 100, 073101, (2012).
[65] P. K. Jain, M. A. El-Sayed, Chem. Phys. Lett., 487, 153, (2010)
[66] C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, J. Phys. Chem. A,113, 1946, (2009)
[67] http://proj.ncku.edu.tw/research/articles/c/20130524/4.html
[68] J. Kottmann and O. Martin, Opt. Express 8, 655, (2001).
[69] P. K. Jain, W. Huang, M. A. El-Sayed, Nano Lett., 7 (7), 2080, (2007)
指導教授 陳一塵(I-Chen Chen) 審核日期 2017-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明