博碩士論文 104329010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.216.94.152
姓名 劉翁境(WENG-JING LIU)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 高濃度電解質於鋰電池知應用研究
(High Concentration Electrolytes for Lithium Batteries)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究
★ 熱解法製備硬碳材料應用於鈉離子電池負極★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響
★ 離子液體電解質於鈉離子電池之應用★ 研發以二氧化錫為負極材料的鈉離子電池: 電解液、輔助性碳材料與黏著劑的優化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文中利用高濃度醚類電解液、高濃度碳酸類電解液,分別應
用於石墨負極和鋰金屬負極,提高電容量、庫倫效率。
第一部分為高濃度醚類電解液應用於鋰金屬負極,同時比較一系
列鏈狀、環狀醚類,發現有別於傳統商用電解液低庫倫效率的問題,
高濃度醚類電解液有約 97%的庫倫效率,同時抑制鋰金屬枝晶狀結構
的產生。
第二部分為高濃度碳酸類電解液應用於鋰金屬負極,其庫倫效率
有約 96%,相較於文獻上傳統碳酸類電解液小於 90%的低庫倫效率,
有效提高約 15%以上的庫倫效率,其重點在不同於以往碳酸類溶劑溶
液容易生長出鋰金屬枝晶狀結構,高濃度碳酸類電解液呈現非常不同
的形貌。
第三部分為高濃度碳酸類電解液應用於石墨負極,在石墨負極上
有相較以往商用電解液較高的電容量,改善了特別是在高速充放電時
傳統電解液在石墨中具有較低的電容量的問題,而利用高濃度電解液
也展現在不添加 EC 的情況下,能有效在石墨負極中具有循環可逆的
電容值,而不破壞石墨的結構。
結果顯示高濃度電解液能有效提高鋰金屬負極、石墨負極的電化
II
學性能,並抑制負面的影響,顯示高濃度電解液為一有效並容易達到
的方法。
摘要(英) In this study, high concentration ether and carbonate electrolytes were
used in graphite and lithium metal anode to enhance the electrochemical
properties in terms of coulombic efficiency, capacity, and high-rate.
The first part of this study explores high concentration ether electrolyte
used for lithium metal anode. On comparing a series of different ether
based electrolytes with 1M and 3M concentration, 3M ether based
electrolyte was found to offer exceptional properties than traditional
electrolytes. 3M ether based electrolytes solved the major problems faced
for Li metal anode (coulombic efficiency and dendrite formation). A very
high coulombic efficiency of ~97 % can be achieved using 3M.
The second part of this study of high concentration carbonate electrolyte
(1M, 3M, and 5.5M) for lithium metal anode. The coulombic efficiency of
about ~96% was obtained for the 5.5M electrolyte which was found to be
quite high compared to the literature on the traditional carbonate electrolyte
(less than 80%). In addition, the dendrite formation is completely inhibited
to a larger extent by using high concentration (5.5 M) carbonate
electrolytes.
The final part of the study involves high concentration carbonate
electrolyte (5.5M) used for graphite anode. The 5.5M electrolytes found to
offer high charge/discharge properties than the commercial electrolyte. The
exceptional properties are obtained even without the addition of EC, which
is a prerequisite for traditional electrolytes. Higher reversible performance
is obtained for 5.5M carbonate without destroying the graphitic structure.
The results show that high concentration electrolytes can effectively
improve the electrochemical performance of lithium metal anode and
graphite anode by offering high coulombic efficiency and inhibiting the
dendrite formation (in Li metal anode). This study demonstrates the higher
performance can be obtained by optimizing the electrolyte concentration.
關鍵字(中) ★ 高濃度
★ 鋰電池
關鍵字(英) ★ High Concentration Electrolyte
論文目次 摘要 I
Abstract III
致謝 IV
目錄 V
圖目錄 VII
第一章 緒論 1
1-1前言 1
1-2研究動機 2
第二章 文獻回顧 5
2-1鋰離子二次電池之石墨負極 5
2-2鋰二次電池之鋰金屬負極 8
2-3鋰金屬電池的契機 11
2-5有機高濃度電解液-石墨負極 19
2-6有機高濃度電解液-鋰金屬負極 37
2-7有機高濃度電解液-固態電解液介面 52
2-8有機高濃度電解液-正極的防蝕 58
第三章 實驗方法與步驟 69
3-1實驗藥品與器材 69
3-2實驗步驟 71
3-3材料鑑定分析 75
3-4電化學性質測試 75
第四章 結果與討論 77
4-1高濃度醚類電解液 77
4-2高濃度碳酸類電解液 100
4-3常見碳酸類電解液應用於石墨負極 121
第五章 結論 129
參考文獻 131
參考文獻

1. Whittingham, M.S., History, Evolution, and Future Status of Energy Storage. Proceedings of the IEEE, 2012. 100(Special Centennial Issue): p. 1518-1534.
2. Henderson, W.A., Glyme-lithium salt phase behavior. J Phys Chem B, 2006. 110(26): p. 13177-83.
3. Qian, J., et al., High rate and stable cycling of lithium metal anode. Nat Commun, 2015. 6(6362): p. 6362.
4. Bruce, P.G., et al., Li-O2 and Li-S batteries with high energy storage. Nat Mater, 2011. 11(1): p. 19-29.
5. Lu, D., et al., Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes. Advanced Energy Materials, 2015. 5(3): p. 1400993.
6. Zheng, G., et al., Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol, 2014. 9(8): p. 618-23.
7. Leung, K., et al., Stability of Solid Electrolyte Interphase Components on Lithium Metal and Reactive Anode Material Surfaces. The Journal of Physical Chemistry C, 2016. 120(12): p. 6302-6313.
8. Xu, W., et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci., 2014. 7(2): p. 513-537.
9. Whittingham, M.S., Lithium Batteries and Cathode Materials. Chemical Reviews, 2004. 104(10): p. 4271-4302.
10. Aurbach, D.W., I.; Zaban, A.; Ein-Eli.;Y. Mengeritsky, E.; Dan, P., Safely and Performance of Tadiran TLR-71 03 Rechargeable Balteries. JOURAL of ELECTROCHEMICAL SOCIETY, 1996. 143: p. 2110.
11. Gauthier, M., et al., Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. J Phys Chem Lett, 2015. 6(22): p. 4653-72.
12. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004. 104(10): p. 4303-417.
13. Park, J.-K., Principles and Applications of Lithium Secondary Batteries. 2012.
14. Younesi, R., et al., Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy Environ. Sci., 2015. 8(7): p. 1905-1922.
15. Jeong, S.-K., et al., Suppression of dendritic lithium formation by using concentrated electrolyte solutions. Electrochemistry Communications, 2008. 10(4): p. 635-638.
16. Park, M.S., et al., A highly reversible lithium metal anode. Sci Rep, 2014. 4(3815): p. 3815.
17. Nishikawa, K., et al., Measurement of Concentration Profiles during Electrodeposition of Li Metal from LiPF6-PC Electrolyte Solution. Journal of The Electrochemical Society, 2007. 154(10): p. A943.
18. Abe, T., et al., Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-A Key to Enhancing the Rate Capability of Lithium-Ion Batteries. Journal of The Electrochemical Society, 2005. 152(11): p. A2151.
19. Abe, T., et al., Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte. Journal of The Electrochemical Society, 2004. 151(8): p. A1120.
20. Yamada, Y., et al., Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc, 2014. 136(13): p. 5039-46.
21. Yamada, Y., et al., General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Appl Mater Interfaces, 2014. 6(14): p. 10892-9.
22. Aurbach, D., Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions. Journal of The Electrochemical Society, 1987. 134(7): p. 1611.
23. Aurbach, D., The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries. Journal of The Electrochemical Society, 1995. 142(9): p. 2873.
24. Zhuang, G.V., et al., Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6/EC:EMC electrolyte. J Phys Chem B, 2005. 109(37): p. 17567-73.
25. Wang, J., et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat Commun, 2016. 7(12032): p. 12032.
26. Myung, S.-T., et al., Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS. Electrochimica Acta, 2009. 55(1): p. 288-297.
27. Zhang, X. and T.M. Devine, Identity of Passive Film Formed on Aluminum in Li-Ion Battery Electrolytes with LiPF[sub 6]. Journal of The Electrochemical Society, 2006. 153(9): p. B344.
28. Eichinger, G., Cathodic decomposition reactions of propylene carbonate. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1976. 74(2): p. 183-193.
29. Jeong, S.-K., et al., Electrochemical Intercalation of Lithium Ion within Graphite from Propylene Carbonate Solutions. Electrochemical and Solid-State Letters, 2003. 6(1): p. A13.
30. Jeong, S.-K., et al., Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: Electrolyte-concentration dependence of electrochemical lithium intercalation reaction. Journal of Power Sources, 2008. 175(1): p. 540-546.
31. Nie, M., et al., Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6in Propylene Carbonate. The Journal of Physical Chemistry C, 2013. 117(48): p. 25381-25389.
32. Wang, D.Y., J.C. Burns, and J.R. Dahn, A Systematic Study of the Concentration of Lithium Hexafluorophosphate (LiPF6) as a Salt for LiCoO2/Graphite Pouch Cells. Journal of the Electrochemical Society, 2014. 161(9): p. A1278-A1283.
33. Lu, D., et al., Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes. Nano Lett, 2017. 17(3): p. 1602-1609.
34. Yamada, Y., et al., A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chem Commun (Camb), 2013. 49(95): p. 11194-6.
35. Moon, H., et al., Mechanism of Li Ion Desolvation at the Interface of Graphite Electrode and Glyme–Li Salt Solvate Ionic Liquids. The Journal of Physical Chemistry C, 2014. 118(35): p. 20246-20256.
36. Liu, X.R., et al., In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide. ACS Appl Mater Interfaces, 2015. 7(18): p. 9573-80.
37. Mizuno, F., et al., Design of Non-aqueous Liquid Electrolytes for Rechargeable Li-O2 Batteries. Electrochemistry, 2011. 79(11): p. 876-881.
38. Hagfeldt, A., et al., Dye-sensitized solar cells. Chem Rev, 2010. 110(11): p. 6595-663.
39. Wang, Z., Ion Association and Salvation Studies of LiClO[sub 4]/Ethylene Carbonate Electrolyte by Raman and Infrared Spectroscopy. Journal of The Electrochemical Society, 1998. 145(10): p. 3346.
40. Yamada, Y., et al., Electrochemical Lithium Intercalation into Graphite in Dimethyl Sulfoxide-Based Electrolytes: Effect of Solvation Structure of Lithium Ion. The Journal of Physical Chemistry C, 2010. 114(26): p. 11680-11685.
41. Suo, L., et al., A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun, 2013. 4: p. 1481.
42. Togasaki, N., T. Momma, and T. Osaka, Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium−oxygen battery. Journal of Power Sources, 2016. 307: p. 98-104.
43. Liu, B., et al., Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High-Concentration Electrolytes. Advanced Functional Materials, 2016. 26(4): p. 605-613.
44. Ma, Q., et al., Improved Cycling Stability of Lithium-Metal Anode with Concentrated Electrolytes Based on Lithium (Fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem, 2016. 3(4): p. 531-536.
45. Liu, P., et al., Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes. Chinese Physics B, 2016. 25(7): p. 078203.
46. Fang, Z., et al., Novel Concentrated Li[(FSO2)(n-C4F9SO2)N]-Based Ether Electrolyte for Superior Stability of Metallic Lithium Anode. ACS Appl Mater Interfaces, 2017. 9(5): p. 4282-4289.
47. Qian, J., et al., Anode-Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials, 2016. 26(39): p. 7094-7102.
48. Zheng, J., et al., Lithium Metal Batteries: Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High-Concentration Electrolyte Layer (Adv. Energy Mater. 8/2016). Advanced Energy Materials, 2016. 6(8).
49. Wan, C., et al., Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries. ACS Appl Mater Interfaces, 2017. 9(17): p. 14741-14748.
50. Krause, L.J., et al., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. Journal of Power Sources, 1997. 68(2): p. 320-325.
51. Wang, X., E. Yasukawa, and S. Mori, Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes. Electrochimica Acta, 2000. 45(17): p. 2677-2684.
52. Li, L., et al., Transport and Electrochemical Properties and Spectral Features of Non-Aqueous Electrolytes Containing LiFSI in Linear Carbonate Solvents. Journal of The Electrochemical Society, 2011. 158(2): p. A74.
53. Kramer, E., et al., Mechanism of Anodic Dissolution of the Aluminum Current Collector in 1 M LiTFSI EC:DEC 3:7 in Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2012. 160(2): p. A356-A360.
54. Yamada, Y., et al., Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes. ChemElectroChem, 2015. 2(11): p. 1687-1694.
55. Zhang, C., et al., Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. J Phys Chem B, 2014. 118(19): p. 5144-53.
56. Yoshida, K., et al., Change from Glyme Solutions to Quasi-ionic Liquids for Binary Mixtures Consisting of Lithium Bis(trifluoromethanesulfonyl)amide and Glymes. The Journal of Physical Chemistry C, 2011. 115(37): p. 18384-18394.
57. Gofer, Y., M. Benzion, and D. Aurbach, Solutions of Liasf6 in 1,3-Dioxolane for Secondary Lithium Batteries. Journal of Power Sources, 1992. 39(2): p. 163-178.
58. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources, 2000. 89: p. 206–218.
59. Han, H.-B., et al., Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. Journal of Power Sources, 2011. 196(7): p. 3623-3632.
60. Duan, B., et al., Li-B Alloy as Anode Material for Lithium/Sulfur Battery. ECS Electrochemistry Letters, 2013. 2(6): p. A47-A51.
61. Kong, L., et al., In situ fabrication of lithium polymer battery basing on a novel electro-polymerization technique. Electrochemistry Communications, 2007. 9(10): p. 2557-2563.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2017-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明