參考文獻 |
[1] 宋福生,「照明系統設計規劃與節能應用」,取自http://enegylaw.ecct.org.tw/files/03_%E7%85%A7%E6%98%8E%E7%B3%BB%E7%B5%B1%E8%A8%AD%E8%A8%88%E8%A6%8F%E5%8A%83%E8%88%87%E7%AF%80%E8%83%BD%E6%87%89%E7%94%A8.pdf (2011).
[2] Cree, Cree First to Break 300 Lumens-Per-Watt Barrier, http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2014/March/300LPW-LED-barrier
[3] P. Deurenberg, C. Hoelen, J. van Meurs, J. Ansems, “Achieving color point stability in RGB multi-chip LED modules using various color control loops,” Proc. SPIE, 5941, 59410C-1 (2005).
[4] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors” IEEE Photon. Tech., 15, 18-20 (2003).
[5] R. Mueller-Mach, G. O. Mueller, M. R. Krames, T. Trottier, “High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides,” IEEE. J. Quantum Elec., 8, 339-345 (2002).
[6] Bouguer, P. (1729). Essai d′optique sur la gradation de la lumière. Jombert.
[7] Bohren, C. F., & Huffman, D. R. (2008). Absorption and scattering of light by small particles. John Wiley & Sons.
[8] Setlur, A. A., Srivastava, A. M., Comanzo, H. A., & Doxsee, D. D. (2004). U.S. Patent No. 6,685,852. Washington, DC: U.S. Patent and Trademark Office.
[9] Shimizu, Y., Sakano, K., Noguchi, Y., & Moriguchi, T. (1999). U.S. Patent No. 5,998,925. Washington, DC: U.S. Patent and Trademark Office.
[10] Won, Y. H., Jang, H. S., Cho, K. W., Song, Y. S., Jeon, D. Y., & Kwon, H. K. (2009). Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property. Optics letters, 34(1), 1-3.
[11] Verzellesi, G., Saguatti, D., Meneghini, M., Bertazzi, F., Goano, M., Meneghesso, G., & Zanoni, E. (2013). Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies. Journal of Applied Physics, 114(7), 071101.
[12] EETimes-Asia, SSL extends lifespan of LED bulb.
[13] Philipslumileds, Luxen Emitter Technical Datasheet
[14] LEDs Magazine, “Lumileds presents new analysis of power LED reliability”.
[15] Luo, X., Fu, X., Chen, F., & Zheng, H. (2013). Phosphor self-heating in phosphor converted light emitting diode packaging. International Journal of Heat and Mass Transfer, 58(1), 276-281.
[16] Tian, Y. (2014). Development of phosphors with high thermal stability and efficiency for phosphor-converted LEDs. Journal of Solid State Lighting, 1(1), 1-15.
[17] Ye, S., Xiao, F., Pan, Y. X., Ma, Y. Y., & Zhang, Q. Y. (2010). Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties. Materials Science and Engineering: R: Reports, 71(1), 1-34.
[18] ZHANG, Y., Lan, L., ZHANG, X., & Qun, X. (2008). Temperature effects on photoluminescence of YAG: Ce 3+ phosphor and performance in white light-emitting diodes. Journal of rare earths, 26(3), 446-449.
[19] Zhang, C., Uchikoshi, T., Xie, R. J., Liu, L., Cho, Y., Sakka, Y., ... & Sekiguchi, T. (2016). Prevention of thermal-and moisture-induced degradation of the photoluminescence properties of the Sr 2 Si 5 N 8: Eu 2+ red phosphor by thermal post-treatment in N 2–H 2. Physical Chemistry Chemical Physics, 18(18), 12494-12504.
[20] Schubert, E. F., Gessmann, T., & Kim, J. K. (2005). Light emitting diodes. John Wiley & Sons, Inc..
[21] Lin, C. C., & Liu, R. S. (2011). Advances in phosphors for light-emitting diodes. The journal of physical chemistry letters, 2(11), 1268-1277.
[22] 吳信謀,白光LED與螢光粉發展應用趨勢,2014,https://www.mnd.gov.tw/Upload/201402/42%E5%8D%B71%E6%9C%9F_044%28%E4%B8%AD%E5%BF%83%E8%AB%96%E9%A1%8C%29.pdf
[23] Gai, S., Li, C., Yang, P., & Lin, J. (2013). Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chemical reviews, 114(4), 2343-2389.
[24] Fluorescent Probes, https://www.thermofisher.com/jp/ja/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/fluorescent-probes.html
[25] Jablonski Energy Diagram, http://www.olympusmicro.com/primer/java/jablonski/jabintro/
[26] Mueller-Mach, R., Mueller, G. O., & Krames, M. R. (2004, January). Phosphor materials and combinations for illumination-grade white pcLEDs. In Optical Science and Technology, SPIE′s 48th Annual Meeting (pp. 115-122). International Society for Optics and Photonics.
[27] Mueller-Mach, R., Mueller, G. O., Krames, M. R., & Trottier, T. (2002). High-power phosphor-converted light-emitting diodes based on III-nitrides. Selected Topics in Quantum Electronics, IEEE Journal of, 8(2), 339-345.
[28] Khalid, A. H., & Kontis, K. (2008). Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications. Sensors, 8(9), 5673-5744
[29] Taskar, N. R., Bhargava, R. N., Barone, J., Chhabra, V., Chabra, V., Dorman, D., ... & Kulkarni, B. (2004, January). Quantum-confined-atom-based nanophosphors for solid state lighting. In Optical Science and Technology, SPIE′s 48th Annual Meeting (pp. 133-141). International Society for Optics and Photonics.
[30] Price, P. J., & Stern, F. (1983). Carrier confinement effects. Surface Science, 132(1), 577-593.
[31] Acharya, Y. B., & Vyavahare, P. D. (1997). Study on the temperature sensing capability of a light-emitting diode. Review of scientific instruments, 68(12), 4465-4467.
[32] 〖"EZBright" 〗^"TM" LED Handling and Packaging Recommendations.
[33] 施敏,半導體元件物理與製作技術,黃調元 譯,二版,國立交通大學出版社,新竹市,民國九十一年。
[34] Lin, G. B., Meyaard, D., Cho, J., Schubert, E. F., Shim, H., & Sone, C. (2012). Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency. Applied Physics Letters, 100(16), 161106.
[35] Li, H., Li, P., Kang, J., Li, Z., Zhang, Y., Liang, M., ... & Wang, G. (2013). Analysis model for efficiency droop of InGaN light-emitting diodes based on reduced effective volume of active region by carrier localization. Applied Physics Express, 6(9), 092101.
[36] Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho E.F. Schubert, M.H. Crawford, D.D. Koleske, M.H. Kim, Y. Park, “Carrier recombination mechanisms and efficiency droop in GaInNGaN light-emitting diodes”, Appl. Phys. Lett., 97, 133507 (2010).
[37] Ozgur, Ü., Liu, H., Li, X., Ni, X., & Morkoc, H. (2010). GaN-based light-emitting diodes: Efficiency at high injection levels. Proceedings of the IEEE, 98(7), 1180-1196.
[38] Sze, S. M., & Kwok, K. N. (2007). Physics of semiconductor devices 3rd Edition. Wiley Online Library.
[39] Van Zeghbroeck, B. (2004). Principles of semiconductor devices. Colarado University.
[40] Pérez-Tomás, A., Fontserè, A., Placidi, M., Jennings, M. R., & Gammon, P. M. (2013). Modelling the metal–semiconductor band structure in implanted ohmic contacts to GaN and SiC. Modelling and Simulation in Materials Science and Engineering, 21(3), 035004.
[41] Farahmand, M., Garetto, C., Bellotti, E., Brennan, K. F., Goano, M., Ghillino, E., ... & Ruden, P. P. (2001). Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries. IEEE Transactions on electron devices, 48(3), 535-542.
[42] Shockley, W., & Read Jr, W. T. (1952). Statistics of the recombinations of holes and electrons. Physical review, 87(5), 835.
[43] Refractive index and dispersion. Schott technical information document TIE-29 (2007).
[44] Ghosh, G. (1997). Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Applied optics, 36(7), 1540-1546.
[45] Malitson, I. H. (1962). Refraction and dispersion of synthetic sapphire. JOSA, 52(12), 1377-1379.
[46] Beadie, G., Brindza, M., Flynn, R. A., Rosenberg, A., & Shirk, J. S. (2015). Refractive index measurements of poly (methyl methacrylate)(PMMA) from 0.4–1.6 μm. Applied optics, 54(31), F139-F143.
[47] Bashir, B. (2009). DEPARTMENT OF TECHNOLOGY AND BUILT ENVIRONMENT.
[48] Chen, C. C., Chen, C. Y., Chien, W. T., Yang, T. H., & Sun, C. C. (2010, August). Optical performance as a function of phosphor particle number in white LED. In SPIE Optical Engineering+ Applications (pp. 778606-778606). International Society for Optics and Photonics.
[49] Zhang, Q., Pi, Z., Chen, M., Luo, X., Xu, L., & Liu, S. (2011). Effective thermal conductivity of silicone/phosphor composites. Journal of Composite Materials, 0021998311401105.
[50] Lin, Y.C. (2016). Photoluminescence properties on Li2SrSiO4:Eu2+ synthesized by sol-gel method (Master’s thesis). Hiroshima University, Japan.
[51] Tailored Optical Materials, Phospshor information leaflet. https://www.fh-muenster.de/fb1/downloads/personal/juestel/juestel/Phosphor_Information_Leaflet_L-S2-14-Eu_Li2SrSiO4-Eu_.pdf
[52] Toublanc, D. (1996). Henyey–Greenstein and Mie phase functions in Monte Carlo radiative transfer computations. Applied optics, 35(18), 3270-3274.
[53] Salh, R. (2011). Defect related luminescence in silicon dioxide network: a review. INTECH Open Access Publisher.
[54] Hsu, Y. C., Tsai, C. C., Chen, M. H., Lo, Y. T., Lee, C. W., & Cheng, W. H. (2008, May). Decay mechanisms of lumen and chromaticity for high-power phosphor-based white
[55] Bachmann, V., Ronda, C., & Meijerink, A. (2009). Temperature quenching of yellow Ce3+ luminescence in YAG: Ce. Chemistry of Materials, 21(10), 2077-2084.
[56] Z. He, Z. Li, X. Fan, W. Cheng, J. Ju, Q. Ou, R. Liang, “Photoluminescence enhancement and thermal performance of surface modified "Y" _"3" 〖"Al" 〗_"5" "O" _"12" ":" 〖"Ce" 〗^"3+" phosphor by chemical wet etching,” Function Materials Lett., 6,1350008-1 (2013).
[57] 劉如熹,白光發光二極體製作技術-由晶粒金屬化至封裝,全華圖書股份有限公司,台北縣,中華民國九十七年。
[58] Yuan, C., & Luo, X. (2013). A unit cell approach to compute thermal conductivity of uncured silicone/phosphor composites. International Journal of Heat and Mass Transfer, 56(1), 206-211.
[59] Marcos-Gomez, D., Ching-Lloyd, J., Elizalde, M. R., Clegg, W. J., & Molina-Aldareguia, J. M. (2010). Predicting the thermal conductivity of composite materials with imperfect interfaces. Composites Science and Technology, 70(16), 2276-2283.
[60] Christensen, K. (2002). Percolation theory. Imperial College London, London, 40.
[61] Piprek, J. (Ed.). (2007). Nitride semiconductor devices: principles and simulation. John Wiley & Sons.
[62] Kerrour, F., Boukabache, A., & Pons, P. (2012). Modelling of thermal behavior N-doped silicon resistor. Journal of Sensor Technology, 2(03), 132.
[63] L.A. Yang, Y. Hao, Q.Y. Yao, and J.cC. Zhang, “Improved Negative Differential Mobility Model of GaN and AlGaN for a Terahertz Gunn Diode”, IEEE Trans. on Electr. Devices, 0018-9838 (2011).
[64] 孔祥仁,「高功率白光LED 封裝之螢光粉特性之研究」,中央大學光電科學與工程所,碩士論文,民國九十八年。
[65] 何信穎,「白光LED之YAG螢光粉光學模型之研究」,中央大學光電科學與工程所,碩士論文,民國九十七年。
[66] Song, K., Zhang, F., Chen, D., Wu, S., Zheng, P., Huang, Q., ... & Qin, H. (2015). Enhancement of photoluminescence properties and modification of crystal structures of Si 3 N 4 doping Li 2 Sr 0.995 SiO 4: 0.005 Eu 2+ phosphors. Materials Research Bulletin, 70, 309-314.
[67] Chen, C. Y., Chang, Y. Y., Yang, T. H., & Sun, C. C. (2012, November). LED packaging for extremely uniform angular CCT distribution. In Solid-State and Organic Lighting (pp. LM4A-1). Optical Society of America.
[68] Xi, Y., & Schubert, E. F. (2004). Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method. Applied Physics Letters, 85(12), 2163-2165.
[69] EIA/JEDEC Standard: “EIA/JEDEC51-2”, Electronic Industries Alliance, Engineering Department, Arlington (1995).
[70] Yoo, Y. S., Roh, T. M., Na, J. H., Son, S. J., & Cho, Y. H. (2013). Simple analysis method for determining internal quantum efficiency and relative recombination ratios in light emitting diodes. Applied Physics Letters, 102(21), 211107.
[71] Yoshida, H., Kuwabara, M., Yamashita, Y., Uchiyama, K., & Kan, H. (2010). Radiative and nonrad
[72] Steigerwald, D. A., Bhat, J. C., Collins, D., Fletcher, R. M., Holcomb, M. O., Ludowise, M. J., ... & Rudaz, S. L. (2002). Illumination with solid state lighting technology. IEEE journal of selected topics in quantum electronics, 8(2), 310-320.
[73] Wall, F., Martin, P. S., & Harbers, G. (2004, January). High-power LED package requirements. In Optical Science and Technology, SPIE′s 48th Annual Meeting (pp. 85-92). International Society for Optics and Photonics.
[74] Sun, C. C., Chen, C. Y., Chen, C. C., Chiu, C. Y., Peng, Y. N., Wang, Y. H., ... & Chung, C. Y. (2012). High uniformity in angular correlated-color-temperature distribution of white LEDs from 2800K to 6500K. Optics express, 20(6), 6622-6630.
[75] Narendran, N., Gu, Y., Freyssinier‐Nova, J. P., & Zhu, Y. (2005). Extracting phosphor‐scattered photons to improve white LED efficiency. physica status solidi (a), 202(6), R60-R62.
[76] Zhu, Y., Narendran, N., & Gu, Y. (2006, August). Investigation of the optical properties of YAG: Ce phosphor. In SPIE Optics+ Photonics (pp. 63370S-63370S). International Society for Optics and Photonics.
[77] Kim, J. K., Luo, H., Schubert, E. F., Cho, J., Sone, C., & Park, Y. (2005). Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup. Japanese Journal of Applied Physics, 44(5L), L649.
[78] Narendran, N. (2005, August). Improved performance white LED. In Optics & Photonics 2005 (pp. 594108-594108). International Society for Optics and Photonics.
[79] Luo, H., Kim, J. K., Schubert, E. F., Cho, J., Sone, C., & Park, Y. (2005). Analysis of high-power packages for phosphor-based white-light-emitting diodes. Applied physics letters, 86(24), 243505.
[80] Allen, S. C., & Steckl, A. J. (2007). ELiXIR-solid-state luminaire with enhanced light extraction by internal reflection. Journal of Display Technology, 3(2), 155-159.
[81] Allen, S. C., & Steckl, A. J. (2008). A nearly ideal phosphor-converted white light-emitting diode. Applied Physics Letters, 92(14), 143309.
[82] Liu, Z. Y., Liu, S., Wang, K., & Luo, X. B. (2010). Studies on optical consistency of white LEDs affected by phosphor thickness and concentration using optical simulation. IEEE Transactions on Components and Packaging Technologies, 33(4), 680-687.
[83] Sun, C. C., Chang, Y. Y., Yang, T. H., Chung, T. Y., Chen, C. C., Lee, T. X., ... & Chen, Y. C. (2014). Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy. Journal of Solid State Lighting, 1(1), 1.
[84] Shuai, Y., He, Y., Tran, N. T., & Shi, F. G. (2011). Angular CCT uniformity of phosphor converted white LEDs: Effects of phosphor materials and packaging structures. IEEE Photonics Technology Letters, 23(3), 137-139.
[85] Wang, K., Wu, D., Chen, F., Liu, Z., Luo, X., & Liu, S. (2010). Angular color uniformity enhancement of white light-emitting diodes integrated with freeform lenses. Optics letters, 35(11), 1860-1862.
[86] Lin, M. T., Ying, S. P., Lin, M. Y., Tai, K. Y., Tai, S. C., Liu, C. H., ... & Sun, C. C. (2010). Ring remote phosphor structure for phosphor-converted white LEDs. IEEE Photonics Technology Letters, 22(8), 574-576.
[87] Hu, R., Cao, B., Zou, Y., Zhu, Y., Liu, S., & Luo, X. (2013). Modeling the light extraction efficiency of bi-layer phosphors in white LEDs. IEEE Photonics Technology Letters, 25(12), 1141-1144.
[88] Luo, X., Fu, X., Chen, F., & Zheng, H. (2013). Phosphor self-heating in phosphor converted light emitting diode packaging. International Journal of Heat and Mass Transfer, 58(1), 276-281.
[89] Chung, T. Y., Chiou, S. C., Chang, Y. Y., Sun, C. C., Yang, T. H., & Chen, S. Y. (2015). Study of temperature distribution within pc-WLEDs using the remote-dome phosphor package. IEEE Photonics Journal, 7(2), 1-11.
[90] Shih, B. J., Chiou, S. C., Hsieh, Y. H., Sun, C. C., Yang, T. H., Chen, S. Y., & Chung, T. Y. (2015). Study of temperature distributions in pc-WLEDs with different phosphor packages. Optics express, 23(26), 33861-33869.
[91] 曾嘉偉,「白光發光二極體之光電熱耦合模擬研究」,中央大學機械工程研究所,碩士論文,民國一零二年。
[92] Haferkorn, B., & Meyer, G. (1998). Li2EuSiO4, ein Europium (II)‐dilithosilicat: Eu [(Li2Si) O4]. Zeitschrift für anorganische und allgemeine Chemie, 624(7), 1079-1081.
[93] University of Liverpool, Inorganic Chemistry, Garnet-Y3Al5O12, http://www.chemtube3d.com/solidstate/SS-YGarnet.htm
[94] Salh, R. (2011). Defect related luminescence in silicon dioxide network: a review. INTECH Open Access Publisher.
[95] 蕭仲博,「大尺寸LED晶片Efficiency Droop之光電熱效應研究」,中央大學機械工程研究所,碩士論文,民國一零三年。
[96] 吳輝昕,「Numerical Investigation of Efficiency Droop in Light-Emitting Diodes」,中央大學機械工程研究所,碩士論文,民國一零五年。 |