參考文獻 |
[1] 高橋正雄, 工業電解化學. 復漢出版社, 1992.
[2] M. A. Laguna-Bercero, “Recent advances in high temperature electrolysis using solid oxide fuel cells: A review,” J. Power Sources, vol. 203, pp. 4–16, 2012.
[3] V. Menon, V. M.Janardhanan, and O. Deutschmann, “A mathematical model to analyze solid oxide electrolyzer cells (SOECs) for hydrogen production,” Chem. Eng. Sci., vol. 110, pp. 83–93, 2014.
[4] D. Grondin, J. Deseure, A. Brisse, M. Zahid, and P. Ozil, “Simulation of a high temperature electrolyzer,” J. Appl. Electrochem., vol. 40, no. 5, pp. 933–941, 2010.
[5] J. KOH, D. YOON, and C. H. OH, “Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell,” J. Nucl. Sci. Technol., vol. 47, no. 7, pp. 599–607, 2010.
[6] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Prospect of solid oxide steam electrolysis for hydrogen production,” WHEC 16, pp. 13–16, 2006.
[7] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Parametric study of solid oxide steam electrolyzer for hydrogen production,” Int. J. Hydrogen Energy, vol. 32, no. 13, pp. 2305–2313, 2007.
[8] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Electrochemical modeling of hydrogen production by proton-conducting solid oxide steam electrolyzer,” Int. J. Hydrogen Energy, vol. 33, no. 15, pp. 4040–4047, 2008.
[9] L. Namwong,S. Authayanun,D. Saebea,Y. Patcharavorachot,and A. Arpornwichanop, “Modeling and optimization of proton-conducting solid oxide electrolysis cell: Conversion of CO2 into value-added products,” J. Power Sources, vol. 331, pp. 515–526, 2016.
[10] Q. Fu, C. Mabilat, M. Zahid, A. Brisse, and L. Gautier, “Syngas production via high temperature steam/CO2 co electrolysis: an economic assessment,” Energy Environ. Sci., no. 3, pp. 1382–1397, 2010.
[11] Y. ElFouih and C. Bouallou, “Recycling of carbon dioxide to produce ethanol,” Energy Procedia, vol. 37, pp. 6679–6686, 2013.
[12] G. Cinti, D. Frattini, E. Jannelli, U. Desideri, and G. Bidini, “Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant,” Appl. Energy, vol. 192, pp. 466–476, 2017.
[13] W. Zhang, B. Yu, and J. Xu, “Efficiency evaluation of high-temperature steam electrolytic systems coupled with different nuclear reactors,” Int. J. Hydrogen Energy, vol. 37, no. 17, pp. 12060–12068, 2012.
[14] F. Wei et al., “Evaluation on the efficiency of a solar powered solid oxide electrolysis cell plant for carbon dioxide reduction,” Int. J. Electrochem. Sci., vol. 9, no. 3, pp. 1146–1162, 2014.
[15] O. Joneydi Shariatzadeh, A. H. Refahi, S. S. Abolhassani, and M. Rahmani, “Modeling and optimization of a novel solar chimney cogeneration power plant combined with solid oxide electrolysis/fuel cell,” Energy Convers. Manag., vol. 105, pp. 423–432, 2015.
[16] Anis Houaijia, M. Roeb, N. Monnerie, and C. Sattler, “Solar power tower as heat and electricity source for a solid oxide electrolyzer: a case study,” Int. J. ENERGY Res., vol. 39, pp. 1120–1130, 2012.
[17] N. Monnerie, M. Roeb, A. Houaijia, and C. Sattler, “Coupling of Wind Energy and Biogas with a High Temperature Steam Electrolyser for Hydrogen and Methane Production,” Green Sustain. Chem., vol. 4, no. 2, pp. 60–69, 2014.
[18] N. Monnerie, A. Houaijia, M. Roeb, C. Sattler, and N. Monnerie, “Methane Production via High Temperature Steam Electrolyser from Renewable Wind Energy: A German Study,” vol. 5, no. 5, pp. 70–80, 2015.
[19] M. Tolga Balta, I. Dincer, and A. Hepbasli, “Thermodynamic assessment of geothermal energy use in hydrogen production,” Int. J. Hydrogen Energy, vol. 34, no. 7, pp. 2925–2939, 2009.
[20] J. Sigurvinsson et al., “Heat transfer problems for the production of hydrogen from geothermal energy,” Energy Convers. Manag., vol. 47, no. 20, pp. 3543–3551, 2006.
[21] J. Sigurvinsson,C.Mansilla, P.Lovera,and F.Werkoff, “Can high temperature steam electrolysis function with geothermal heat?,” Int. J. Hydrogen Energy, vol. 32, no. 9, pp. 1174–1182, 2007.
[22] T. Kobayashi, K. Abe, Y. Ukyo, and H. Iwahara, “Reduction of nitrogen oxide by steam electrolysis cell using a protonic conductor SrZr Yb O and the catalyst Sr /Al O,” Solid State Ionics, vol. 134, pp. 241–247, 2000.
[23] D. S.Yun, J. H. Joo, J. H. Yu, H. C. Yoon, J. N. Kim, and C. Y. Yoo, “Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst,” J. Power Sources, vol. 284, pp. 245–251, 2015.
[24] G. Wu, K. Xie, Y. Wu, W. Yao, and J. Zhou, “Electrochemical conversion of H2O/CO2 to fuel in a proton-conducting solid oxide electrolyser,” J. Power Sources, vol. 232, pp. 187–192, 2013.
[25] “http://www.thewindpower.net/turbine_en_55_ge-energy_1.5se.php.” .
[26] “https://en.wind-turbine-models.com/turbines/68-enercon-e-40-6.44.” .
[27] T.Yamaguchi, Y.Ichihashi, T.Mishima, N.Matsubara, and T.Yamanishi, “Achievement of More Than 25 % Conversion Heterojunction Solar Cell,” vol. 4, no. 6, pp. 1433–1435, 2014.
[28] 蔡秉蒼, “應用金屬發泡材為流道之質子交換膜燃料電池之研究,” 國立中央大學, 2012.
[29] L. Mingyi, Y. Bo, X. Jingming, and C. Jing, “Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production,” J. Power Sources, vol. 177, no. 2, pp. 493–499, 2008.
[30] P. A. Stuart, T. Unno, J. A. Kilner, and S. J. Skinner, “Solid oxide proton conducting steam electrolysers,” Solid State Ionics, vol. 179, no. 21–26, pp. 1120–1124, 2008.
[31] H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, “Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production,” Solid State Ionics, vol. 3–4, no. C, pp. 359–363, 1981.
[32] J. Bu, P. G. Jönsson, and Z. Zhao, “Ionic conductivity of dense BaZr0.5Ce0.3Ln0.2O3-δ (Ln ¼ Y, Sm, Gd, Dy) electrolytes,” J. Power Sources, vol. 272, pp. 789–793, 2014. |