參考文獻 |
References
1. Rogers, J.A., T. Someya, and Y.G. Huang, Materials and mechanics for stretchable electronics. Science, 2010: p. 327, 1603-1607.
2. Park, H., et al., Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars. Acs Nano, 2015. 9(10): p. 9974-9985.
3. Il Han, S., et al., Flexible and stretchable energy harvesting device using three-dimensional poly(dimethylsiloxane). Japanese Journal of Applied Physics, 2014. 53(8).
4. Ruhhammer, J., et al., Highly elastic conductive polymeric MEMS. Science and Technology of Advanced Materials, 2015. 16(1).
5. Rosset, S. and H.R. Shea, Flexible and stretchable electrodes for dielectric elastomer actuators. Applied Physics a-Materials Science & Processing, 2013. 110(2): p. 281-307.
6. Guo, L., et al., A PDMS-Based Integrated Stretchable Microelectrode Array (isMEA) for Neural and Muscular Surface Interfacing. Ieee Transactions on Biomedical Circuits and Systems, 2013. 7(1): p. 1-10.
7. Fujimagari, Y., Y. Fukushi, and Y. Nishioka, Stretchable Biofuel Cells with Silver Nano Wiring on a Polydimethylsiloxane Substrate. Journal of Photopolymer Science and Technology, 2015. 28(3): p. 357-361.
8. Bernardeschi, I., et al., A soft, stretchable and conductive biointerface for cell mechanobiology. Biomedical Microdevices, 2015. 17(2).
9. Adrega, T. and S.P. Lacour, Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. Journal of Micromechanics and Microengineering, 2010. 20(5).
10. Zhou, C., S. Bette, and U. Schnakenberg, Flexible and Stretchable Gold Microstructures on Extra Soft Poly(dimethylsiloxane) Substrates. Advanced Materials, 2015. 27(42): p. 6664-+.
11. Befahy, S., et al., Stretchable gold tracks on flat polydimethylsiloxane (PDMS) rubber substrate. Journal of Adhesion, 2008. 84(3): p. 231-239.
12. Seghir, R. and S. Arscott, Mechanically robust, electrically stable metal arrays on plasma-oxidized polydimethylsiloxane for stretchable technologies. Journal of Applied Physics, 2015. 118(4).
13. Manzoor, M.U., et al., Stretchable conducting gold films prepared with composite MWNT/PDMS substrates. AIP Advances, 2015. 5(10).
14. Chou, N., J. Lee, and S. Kim, Large-sized out-of-plane stretchable electrodes based on poly-dimethylsiloxane substrate. Applied Physics Letters, 2014. 105(24).
15. Li, C.Y. and Y.C. Liao, Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment. Acs Applied Materials & Interfaces, 2016. 8(18): p. 11868-11874.
16. Larmagnac, A., et al., Stretchable electronics based on Ag-PDMS composites. Scientific Reports, 2014. 4.
17. Tang, J., et al., Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates. Scientific Reports, 2015. 5.
18. Lee, H., et al., Well-Ordered and High Density Coordination-Type Bonding to Strengthen Contact of Silver Nanowires on Highly Stretchable Polydimethylsiloxane. Advanced Functional Materials, 2014. 24(21): p. 3276-3283.
19. Zhou, D.B., et al., Effects of oxygen plasma treatment and e-beam evaporation on AgNWs/PDMS based stretchable electrode. Smart Materials and Structures, 2014. 23(10).
20. Kim, J., et al., Silver nanowire network embedded in polydimethylsiloxane as stretchable, transparent, and conductive substrates. Journal of Applied Polymer Science, 2016. 133(33).
21. Lee, J.B. and D.Y. Khang, Electrical and mechanical characterization of stretchable multi-walled carbon nanotubes/polydimethylsiloxane elastomeric composite conductors. Composites Science and Technology, 2012. 72(11): p. 1257-1263.
22. Chen, M.T., et al., Highly conductive and stretchable polymer composites based on graphene/MWCNT network. Chemical Communications, 2013. 49(16): p. 1612-1614.
23. Chen, M.T., et al., Highly Stretchable Conductors Integrated with a Conductive Carbon Nanotube/Graphene Network and 3D Porous Poly(dimethylsiloxane). Advanced Functional Materials, 2014. 24(47): p. 7548-7556.
24. Duan, S.S., et al., Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network. Acs Applied Materials & Interfaces, 2016. 8(3): p. 2187-2192.
25. Feng, C.F., et al., Shrinkage induced stretchable micro-wrinkled reduced graphene oxide composite with recoverable conductivity. Carbon, 2015. 93: p. 878-886.
26. Noh, J.S., Highly conductive and stretchable poly(dimethylsiloxane):poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) blends for organic interconnects. Rsc Advances, 2014. 4(4): p. 1857-1863.
27. Racles, C., et al., Highly stretchable composites from PDMS and polyazomethine fine particles. Rsc Advances, 2015. 5(124): p. 102599-102609.
28. Park, M., J. Park, and U. Jeong, Design of conductive composite elastomers for stretchable electronics. Nano Today, 2014. 9(2): p. 244-260.
29. Kim, K., et al., Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS). Sensors, 2016. 16(4).
30. Hyun, D.C., et al., Ordered Zigzag Stripes of Polymer Gel/Metal Nanoparticle Composites for Highly Stretchable Conductive Electrodes. Advanced Materials, 2011. 23(26): p. 2946-+.
31. Guo, F.M., et al., High performance of stretchable carbon nanotube-polypyrrole fiber supercapacitors under dynamic deformation and temperature variation. Journal of Materials Chemistry A, 2016. 4(23): p. 9311-9318.
32. G., T., et al., Polypyrrole–MnO2-Coated Textile-Based Flexible-Stretchable Supercapacitor with High Electrochemical and Mechanical Reliability. Acs Applied Materials & Interfaces, 2015. 7: p. 9228-9234.
33. Qin, D., Y.N. Xia, and G.M. Whitesides, Soft lithography for micro- and nanoscale patterning. Nature Protocols, 2010. 5(3): p. 491-502.
34. Hu, W.W., et al., Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science & Engineering C-Materials for Biological Applications, 2014. 37: p. 28-36.
35. Cheng, M.C., et al., Super-Resolution Imaging of PDMS Nanochannels by Single-Molecule Micelle-Assisted Blink Microscopy. Physical Chemistry B, 2013. 117: p. 4406-4411.
36. Sun, B., et al., Stability and Mechanical Properties of Electrochemically Prepared Conducting Polypyrrole Films. Journal of The Electrochemical Society, 1989. 24: p. 4024-4029.
37. Mitchell, G.R. and A. Geri, Molecular organisation of electrochemically prepared conducting polypyrrole films. Journal of Physics D: Applied Physics, 1987. 20: p. 1346.
38. Garg, S., C. Hurren, and A. Kaynak, Improvement of Adhesion of Conductive Polypyrrole Coating on Wool and Polyester Fabrics Using Atmospheric Plasma Treatment. Synthetic Metals, 2007. 157: p. 41-47.
39. Kenry, J.C. Yeo, and C.T. Lim, Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsystems & Nanoengineering, 2016. 2: p. 16043.
40. Xia, Y.N. and G.M. Whitesides, Soft lithography. Annual Review of Materials Science, 1998. 28: p. 153-184.
41. Wu, C.Y., W.H. Liao, and Y.C. Tung, Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab on a Chip, 2011. 11(10): p. 1740-1746.
42. Yeo, J.C., et al., Wearable tactile sensor based on flexible microfluidics. Lab on a Chip, 2016. 16(17): p. 3244-3250.
43. Jung, T. and S. Yang, Highly Stable Liquid Metal-Based Pressure Sensor Integrated with a Microfluidic Channel. Sensors, 2015. 15(5): p. 11823-11835.
44. Ota, H., et al., Highly deformable liquid-state heterojunction sensors. Nature Communications, 2014. 5.
45. Kenry, et al., Highly Flexible Graphene Oxide Nanosuspension Liquid-Based Microfluidic Tactile Sensor. Small, 2016. 12(12): p. 1593-1604.
46. Halldorsson, S., et al., Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics, 2015. 63: p. 218-231.
47. Bhatia, S.N. and D.E. Ingber, Microfluidic organs-on-chips. Nature Biotechnology, 2014. 32(8): p. 760-772.
48. Pavesi, A., et al., How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications. Lab on a Chip, 2011. 11(9): p. 1593-1595.
49. Tsao, C.-W., X.-C. Guo, and W.-W. Hu, Highly stretchable conductive polypyrrole film on a three dimensional porous polydimethylsiloxane surface fabricated by a simple soft lithography process. RSC Advances, 2016. 6(114): p. 113344-113351.
50. Tan, S.H., et al., Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics, 2010. 4(3): p. 032204.
51. Zhang, T. and F.D. Blum, Cationic surfactant blocks radical-inhibiting sites on silica. J Colloid Interface Sci, 2017. 504: p. 111-114.
52. Viratyaporn, W. and R.L. Lehman, Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. Journal of Thermal Analysis and Calorimetry, 2011. 103(1): p. 267-273.
53. Demir, M.M., et al., PMMA/Zinc Oxide Nanocomposites Prepared by In-Situ Bulk Polymerization. Macromolecular Rapid Communications, 2006. 27(10): p. 763-770.
54. Morra, M., et al., On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. Journal of Colloid and Interface Science, 1990. 137(1): p. 11-24.
55. Fritz, J.L. and M.J. Owen, Hydrophobic recovery of plasma-treated polydimethylsiloxane. Journal of Adhesion, 1995. 54(1-2): p. 33-45. |