以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:43 、訪客IP:18.219.119.163
姓名 路姿庭(Tsz-Ting Lu) 查詢紙本館藏 畢業系所 財務金融學系 論文名稱 台灣加權指數價格之隱含機率分配與風險值之間的關係
(Implied Stock Index Probability Distribution and Value at Risk)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在過去,Black-Sholes(1973)模型已是一個選擇權定價模型的基礎,但對於深價內、深價外的選擇權則常有定價錯誤(mispricing)的情況,因此,有許多文獻提出不同的選擇權定價模型來調整克服;另一方面,風險值(VaR)亦已成為執行風險管理的重要工具之一,在學術界也發表了許多關於此範疇之研究文獻。但目前鮮少有結合兩者範疇去做探討之相關研究。因此,為能更深入了解兩者範疇之關係,故選以台灣加權指數(TAIEX)為題材,進行用選擇權所得出的隱含指數價格與風險值之相關研究。
本研究從台灣加權指數出發,透過參考Jarrow and Rudd(1982)文獻所提出的選擇權定價模型來做調整及克服布雷克─休斯模型,進行台灣加權指數的隱含機率分配之取得,並搭配歷史資料價格來算出VaR進行比較。我們發現利用Jarrow and Rudd(1982)文獻所提出的選擇權定價模型去做風險管理,相較於花時間去看財務報表或公開資訊等資料時,將會是一個很好且簡單易執行的參考依據。摘要(英)
In the past, the Black-Sholes model, studied by Black-Scholes(1973), was the basis for an option pricing model, but it frequently misprices deep in-the-money and deep out-of-the-money options. Hence, a lot of literature proposed different model designed to overcome most of its limitations. On the other hand, value at risk(VaR)has become one of the most important tools for risk management, and many research papers have been published in the academic field. But there is little the relevant research to explore between the two field. Therefore, in order to gain a deeper understanding of the relationship between the two categories, we choose the Taiwan Stock Exchange(TAIEX)as the theme, and use the option to obtain the implied stock price index and compute the corresponding VaR to do the related research.
Based on the selection pricing model proposed by Jarrow and Rudd(1982), this study uses the adjusted model to overcome the Black-Sholes model, and then gets the implied probability distribution of TAIEX with using the historical data prices to calculate VaR to compare. We find that using the option pricing model proposed by Jarrow and Rudd(1982)to do risk management, it would be a better reference and easier to implement than the thing that taking time to look at financial statements or public information.關鍵字(中) ★ Black-Scholes模型
★ 風險值
★ 台灣加權指數關鍵字(英) 論文目次
目錄
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
一、緒論 1
1-1研究背景與動機 1
1-2研究目的與問題 2
1-3研究流程 3
二、文獻探討 4
2-1選擇權定價模型 4
2-2風險值 6
三、研究方法 8
3-1 Jarrow and Rudd(1982)的模型 8
3-2資料選取 9
3-3估計隱含動差 10
四、資料分析 12
4-1選擇權的定價模型與風險值之間的關係 12
4-2偏態與峰態的延伸探討 26
五、結論與建議 35
5-1研究結論 35
5-2未來研究建議 36
參考文獻 37
附錄一:Jarrow and Rudd(1982)的模型推導 39
附錄二:Matlab程式碼 46
1.估計Jarrow and Rudd(1982)模型之隱含偏態、峰態 46
2.利用蒙地卡羅模擬估計股價走勢 48參考文獻 1. Bali, T.G., and Murray, S., “Does Risk-Neutral Skewness Predict the Cross Section of Equity Option Portfolio Returns?,” Journal of Financial and Quantitative Analysis, Vol 48, pp.1145-1171, August 2013.
2. Beder, Tanya, “VAR: Seductive but Dangerous,” Financial Analysts Journal, pp.12-24, October 1995.
3. Black, F., “Fact and Fantasy in the Use of Options,” Financial Analysts Journal, pp. 36-72, 1975.
4. Conrad, J., Dittmar, R.F., and Ghysels, E., “Ex Ante Skewness and Expected Stock Returns,” Journal of Finance, Vol LXVIII, pp.85-124, February 2013.
5. Corrado, C.J., and Su, T., “S&P 500 Index Option Tests of Jarrow and Rudd’s Approximate Option Valuation Formula,” Journal of Futures Markets (1996), Vol 16, pp.611-629, 1996.
6. Cox, J.C., and Ross, S.A., “The Valuation of Options for Altervative Stochastic Processes,” Journal of Financial Economics, pp. 145-166, March 1976.
7. Duffie, D., and Pan, J., “An Overview of Value at Risk,” Journal of Derivatives, pp.7-49, January 1997.
8. Emanuel, D.C., and MacBeth, J.D., “Further Results on the Constant Elasticity of Variance Call Option Pricing Model,” Journal of Financial and Quantitative Analysis, Vol XVII, pp. 533-554, November 1982.
9. Jackwerth, J.C., “Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review,” Journal of Derivatives, pp. 66-82, September 1999.
10. Jackwerth, J.C., and Rubinstein, M., “Recovering Probability Distributions from Option Prices,” Journal of Finance, Vol LI, pp. 1611-1631, December 1996.
11. Jarrow, R., and Rudd, A., “Approximate Option Valuation for Arbitrary Stochastic Processes”, Journal of Financial Economics, pp. 347-369, May 1982.
12. Jorion, P., “Risk Management Lessons from Long-Term Capital Management,” European Financial Management, Vol 6, pp.277-300, 2000.
13. MacBeth, J.D., and Merville, L.J., “An Empirical Examination of the Black-Scholes Call Option Pricing Model,” Journal of Finance, Vol XXXIV, pp. 1173-1186, December 1979.
14. Marshall, Chris and Siegel, M., “Value at Risk: Implementing a Risk Management Standard,” Journal of Derivatives, pp.91-110, June 1996.
15. Mittnik, S., and Paolella, M.S., “VaR and CVaR Implied in Option Prices,” Journal of Risk and Financial Management (February 2016), pp. 1-6, February 2016.
16. Rubinstein, M., “Nonparametric Tests of Alternative Option Pricing Model Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978,” Journal of Finance, Vol XL, pp.455-479, June 1985.
17. Rubinstein, M., “Implied Binomial Trees,” Journal of Finance, Vol LXIX, pp.771-818, July 1994.指導教授 沈信漢(Hsin-Han Shen) 審核日期 2017-6-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare