博碩士論文 89322073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.142.130.242
姓名 朱正安(Chen-an Chu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 大地材料熱傳導係數量測與預測模式
(Measurement and Modeling for Thermal Conductivity of Geomaterials)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究基於熱探針量測法建立一適用於可壓實大地材料之連續性熱探針量測法。本法將熱探針直接埋入於試體中,於壓實過程中在不同之壓實程度時進行量測。除可避免因試體及熱探棒間存在淨空熱阻造成量測結果之誤差外,亦可在單一試體相同重量含水量時獲得不同黏土乾密度下之熱傳導係數。利用本方法,可針對以黏土及砂或碎石混合所製成使用於高放射性廢料處置之緩衝卅回填材料進行熱傳導係數量測。
由於黏土及砂或碎石混合物可視為多相複合材料,本研究利用微觀力學模式之概念將黏土部份視為基質材料,砂或碎石視為加強材料。針對基質材料部份,本研究利用McInnes模式之概念配合黏土之物理性質建立基質預測模式後,以微觀力學模式計算不同基質與顆粒加強材體積混合比下之熱傳導係數,並以試驗及文獻數據進行驗證。
摘要(英) In this thesis, continuous embedded line-source measurement for thermal conductivity is introduced with the development progress while various kind of affecting factors evaluated. This method is suitable for compactable geomaterials like buffer materials for nuclear waste disposal concept. With the precision and methodology of the method, a series of designed test on soils with different moisture content and mixture batch are executed to develop a model for prediction. The model is constructed with a refined empirical model for the matrix and the micromechanical model for the global mixture.
關鍵字(中) ★ 微觀力學模式
★ 膨潤土
★ 放射性廢料處置
★ 熱探針法
★ 熱傳導係數
關鍵字(英) ★ thermal conductivity measurement
★ buffer/backfill material
★ micromechanical model
★ empirical model
★ geomaterials
論文目次 Table of Contents
摘要 i
Abstract iii
List of figures ix
List of Tables xviii
1 Introduction 1
1.1 Background 1
1.2 Scope and Purpose 3
2 Literature review 5
2.1 Thermal Conductivity of Soils 5
2.1.1 Heat transfer modes 5
2.1.2 Soil Thermal Conductivity 5
2.2 Nuclear Waste Disposal Concept 11
2.2.1 The Nuclear Waste 12
2.2.2 The Deep Geological Disposal Concept 16
2.2.3 Buffer/Backfill Materials 20
2.2.4 Buffer/backfill Materials Manufacturing 24
2.3 Thermal Conductivity Measurement 29
2.3.1 Steady-State Methods 30
2.3.2 Transient-state methods 33
2.3.3 Comparison between Steady State and Transient State Methods 40
2.4 Prediction Models 41
2.4.1 Empirical Models 42
2.4.2 Semi-empirical models 45
2.4.3 Micromechanical Models 46
3 Thermal Conductivity Measurement Improvements 51
3.1 Factors that Affect Thermal-Probe Method 51
3.1.1 Clearance 52
3.1.2 Specimen Size Effect 61
3.1.3 Thermal Grease (Paste) 64
3.1.4 Input Power 68
3.2 Embedded Thermal Probe Method 71
3.2.1 Compaction Mold 72
3.2.2 Thermal Probe Method 75
3.2.3 Procedures 78
3.2.4 Benefit of Embedded Thermal Probe Method 80
3.3 Multi-stage Thermal Probe Method 81
3.3.1 Improvements 81
3.3.2 Procedure 83
4 Modeling for Thermal Conductivity of Geomaterials 89
4.1 Prediction Model Development 89
4.1.1 Evaluation of Parameters of McInnes’ Model 90
4.1.2 Parameters for McInnes’ Model 94
4.1.3 Determination of Parameters 99
4.1.4 Proposed Matrix model 106
4.1.5 Incorporated with Micromechanics Models 110
4.2 Validation for Proposed Model 112
4.2.1 Börgesson (1994) 113
4.2.2 Ould-Lahoucine (2002) 114
4.2.3 JNC (1999) 122
4.3 Validation Experiment for Proposed Model 123
4.3.1 Experimental Program 123
4.3.2 Materials 124
4.3.3 Sand (Crushed Granite) 127
4.3.4 Implementation of the Proposed Overall Model 128
5 Conclusion 132
References 135
參考文獻 Aboudi, J., Mechanics of Composite Materials, Elsevier, Amsterdam (1991).
Abu-Hamdeh, N. H., Khdair, A. I., Reeder, R. C., “A comparison of two methods used to evaluate thermal conductivity for some soils,” International journal of Heat and Mass Transfer, Vol.44, pp.1073-1078 (2001).
Agilent Technologies, “Agilent 34970A data acquisition/switch unit: user’s manual,” 3rd Ed., U.S.A. (1999).
American Nuclear Society, “Waste: Types of Radioactive wastes: Low level waste“, (Sep. 2007).
American Society for Testing Materials, “ASTM D5334: Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure,” Annual Book of ASTM Standards, Vol.0409 (2000).
Börgesson, L., Fredrikson, A., and Johansson, L., “Heat conductivity of buffer materials,” SKB Technical Report, Lund, Sweden (1994).
Campbell, G. S., Soil Physics with BASIC Transport Models for Soil-Plant Systems, Elsevier, New York (1985).
Carslaw, H. S. and Jaeger, J. C., Conduction of heat in solids, Oxford University Press, New York (1967).
Chapman, N. A., McKinley, I. G., and Hill, M. D., “The Geological Disposal of Nuclear Waste,” John Wiley & Sons, London (1987).
Christensen, R. M., Mechanics of Composite Materials, John-Wiley & Sons, New York (1979).
Chu, C. A., Chang, D. Y., Tien, Y. M., “Measurement on thermal conductivity of sand-bentonite mixture,” Proceedings of 2004 Rock engineering conference, pp.694~701, Tansuei, Taiwan (2004)(In Chinese).
Chu, C. A., Tien, Y. M., Jung, F. C., Chen, J., Wu, P. L., “Micromechanics approach for Thermal Conductivity of Sand-Bentonite Mixtures, “2006 East Asia Forum on Radiowaste Management Conference, Longtan, Taiwan(2006).
Farouki, O. T., Thermal Properties of Soils, Series on Rock and Soil Mechanics, Vol.11, Trans Tech Publications, Germany (1986).
Fujita, H., Sugita, Y., Noda, M. and Kiyohashi, H., “Measurement of thermophysical properties of buffer materials.” PNC Report, Power Reactor and Nuclear Fuel Development Corporation, TN1410 92-052 (1992).
Geneste, P., Raynal, M., Atabek, R., Dardaine, M., and Oliver, J., “Characterization of a French Clay Barrier and Outline of the Experimental Progamme,” Engineering Geology, Vol. 28, pp. 443-454 (1990).
Gera, F., Hueckel, T., Peano, A., “Critical issues in modeling the long-term hydro-thermo-mechanical performance of natural clay barriers,” Engineering Geology, Vol. 41, pp. 17-33 (1996).
Hashin, H., “Analysis of composite materials–A Survey,” Journal of Applied Mechanics. 50, 481-505 (1983).
Hillel, D., Introduction to soil physics, Academic Press, New York (1982).
Incropera, F. P., DeWitt, D. P., “Fundamentals of Heat and Mass Transfer, 4th Ed.,” John Wiley & Sons, Inc., New York (1996).
Japan Nuclear Cycle Development Institute, 1999. Repository design and engineering technology. JNC Supporting Report 2, Japan.
Kahr, G., Müller-von Moos, M., Wärmeleitfähigkeit von Bentonit MX80 und Montigel nach der Heizdrahtmethode, NAGRA Technischer Bericht 82-06, Baden (1999).
Kiyohashi, H., Banno, K., Effective thermal conductivity of compact bentonite as a buffer material for high level radioactive waste. High Temp. High Press. 27/28, 653–663 (1996).
Knutsson, S., On the thermal conductivity and thermal diffusivity of highly compacted bentonite, SKBF/KBS Technical Report 83-72, Stockholm (1983).
Krauskopf, K. B., Radioactive waste disposal and geology, Chapman and Hall, London (1988).
McLaughlin, R.,”A study of the differential scheme for composite materials,” Int. J. Engng. Sci. 15, 237-244 (1977).
Nemat-Nasser, S., Hori, M., Micro-mechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam(2993).
Nuclear Energy Agency, Organization for Economic Co-Operation and Development, “Engineered Barrier System and the Safety of Deep Geological Repositories,” OECD, France (2003).
Ould-Lahoucine, C., Sakashita, H. and Kumada, T., “Measurement of thermal conductivity of buffer materials and evaluation of existing correlations predicting it,” Nuclear Engineering and Design, Vol. 216, Issues 1-3, pp. 1-11 (2002).
Pribnow, D. F. C., and Sass, J. H., “Determination of thermal conductivity for deep boreholes,” J. Geophys. Res., 100, 9981 – 9994 (1995).
Suzuki, H., Shibata, M., Yamagata, J., Hirose, I., Terakado, K., 1992. Measurement of characteristics of buffer materials (1). PNC Report, Power Reactor and Nuclear Fuel Development Corporation, PNC TN8410 92-057.
Tarn, J. Q., “On the thermal conductivity of composite materials,” Proc. Natl. Sci. Counc. R.O.C., 4, 1, 106-111 (1979).
Thunvik, R., and Braester, C., Heat propagation from a radioactive waste repository – SKB 91 canister, Royal Institute of Technology, Stockholm, Sweden (1991).
Tien, Y. M., Wu, P. L., Chuang, W. S., Wu, L. H., “Micromechanical Model for Compaction Characteristics of Bentonite-Sand Mixtures,” Applied Clay Science. 26, 489-498 (2004).
Tien, Y. M., Chu, C. A., and Chuang, W. S., “The Prediction Model of Thermal Conductivity of Sand-Bentonite Based Buffer Material,” Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Tours, France (2005).
Tien, Y. M., Chung, Y. J., Chang, J. M., Chu, C. A., “Thermal conductivity and ultrasonic velocity measurement on transversely-isotropic rock,” 12th Symposium on Geotechnical Engineering, Paper No.C3-38, Sitou (2007) (In Chinese).
Tien, Y. M., Chang, J. M., Jyo, Z. L., Chu, C. A., “Effect of interface properties on rock thermal conductivity measurement,” 12th Symposium on Geotechnical Engineering, Paper No.C3-39, Sitou (2007) (In Chinese).
Tien, Y. M., Wu, P. L., Chu, C. A., “Thermal Conductivity and Compaction Characteristics of Bentonite-Base Buffer Materials,” 2005 Taiwan Atomic Energy Fourm (TAEF), Longtan, Taiwan (2005).
Tien, Y. M., Chu, C. A., Chang, J. M., Chung, I. J., Chen, J., “Adaptability of thermal probe measurement for geomaterials,” Proceedings of 2006 Rock engineering conference, Tainan, Taiwan (2006)(In Chinese)
Touloukian, Y. S., Powell, R. W., Ho, C. Y., Klemens, P. G., Thermal conductivity – nonmetallic solids, IFI/Plenum, New York (1970).
Wardrop, W. L & Associates Ltd, Buffer and backfilling systems for a nuclear fuel waste disposal vault. AECL technical record TR-341, Canada (1985).
Yong, R. N., Mohamed, A. M., Shooshpasha, O. I., and Onofrei, C., “Hydro-thermal performance of unsaturated bentonite-sand buffer material,” Engineering Geology, Vol. 47, pp. 351-365 (1997).
指導教授 田永銘(Yong-ming Tien) 審核日期 2009-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明