博碩士論文 89322074 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.117.154.229
姓名 曾豊升(Feng-Sheng Tseng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 現地土壤之液化強度與震陷特性
(Liquefaction resistance and earthquake-induced settlement properties of the field soils)
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土中模型基樁之單向反覆軸向載重試驗★ 邊坡穩定分析方法之不確定性
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 土壤液化引致地盤永久位移之研究★ 台北盆地地盤放大特性之研究
★ 水力回填煤灰之動態特性★ 全機率土壤液化分析法
★ 黏土壓縮與壓密行為之研究★ 集集地震液化土之穩態強度
★ 地震規模修正因子之探討★ 鯉魚潭水庫大壩受震反應分析
★ 全機率土壤液化評估法之研究★ 基樁軸向承載之依時行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用現地所取回之不擾動土樣進行一系列動力三軸試驗,用以探討現地土壤之液化強度與震陷特性。不擾動土樣包含薄管土樣與塊狀土樣兩種,以粉質砂土為主。此外,本文亦蒐集其他本土砂土之液化強度資料並與本研究試驗結果比較,發現砂土的液化強度範圍約SR20≒0.17~0.31。
本研究利用再壓密試驗結果探討現有三種液化後震陷評估法之關係圖表,並各依其程序探討集集地震所引致地盤沈陷之案例,以期工程界在選擇評估法時有所助益。
摘要(英) In this paper, a series of undisturbed samples were carried out in a sandy deposit at central Taiwan. Laboratory physical tests and cyclic traxial tests were then conducted to obtain the basic properties, volumetric strain and cyclic resistance. The in-site samplings consisted of tube sampling during boring and block sampling in a pit. Besides, the others cyclic resistance of in-site undisturbed samples also was collected and compared with the outcome of this study. It was found that the scope of the cyclic resistance(SR20) of in-site sandy soil ranges between 0.17 and 0.31.
To investigate related charts suggested by three methods about estimation of earthquake-induced settlements in saturated sand deposits, the volumetric strain obtained from re-consolidation test would be analyzed with relative density and the maximum shear strain. These test data and conclusions may provide a valuable base for seismic design in a foundation soil with sandy soils.
關鍵字(中) ★ 粉質砂土
★ 土壤液化
★ 液化後沈陷
★ 液化強度
關鍵字(英) ★ post-liquefaction settlement
★ cyclic resistance
★ silty sand
★ soil liquefaction
論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
致 謝 Ⅲ
目 錄 Ⅳ
表 目 錄 Ⅶ
圖 目 錄 Ⅹ
符號說明 XI
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 論文內容 2
第二章 文獻回顧 3
2.1 液化後沈陷的機制 3
2.2 砂土之反覆阻抗(Cyclic Resistance)特性 4
2.2.1反覆軟化的定義(Cyclic softening) 4
2.2.2重模砂土之反覆阻抗 4
2.2.3現地砂土層之反覆阻抗 5
2.2.4粉質砂土之反覆阻抗 5
2.3 Tokimatsu and Seed(1987)簡易震陷評估法 6
2.3.1反覆剪應力比與(N1)60的估算 6
2.3.2相對密度與SPT-N值之轉換關係 8
2.3.3體積應變量之估算 8
2.4 Ishihara and Yoshimine(1992)液化後沈陷量評估法 9
2.4.1再壓密之體積應變量 9
2.4.2抗液化安全係數與最大剪應變之關係 10
2.4.3抗液化安全係數與液化後體積應變量之關係 10
2.4.4估算液化後地盤沈陷量之程序 11
2.5 Shamoto, Sato and Zhang(1996)簡易震陷評估法 12
2.5.1與先前研究比較 12
2.5.2砂土種類、邊界圍束與膨脹歷時對震陷評估之影響 13
2.5.3評估法程序 15
第三章 試體準備與試驗方法 17
3.1 試體準備 17
3.1.1薄管土樣 17
3.1.2塊狀土樣 17
3.1.3重模土樣 17
3.2 試驗方法 18
3.2.1自然含水量與濕土單位重 18
3.2.2孔隙比 19
3.2.3顆粒粒徑分析試驗 19
3.2.4比重分析 19
3.2.5阿太堡限度(Atterberg Limits)試驗 19
3.2.6相對密度(Relative Density) 20
3.2.7動力三軸試驗儀器與周邊配備 20
3.2.8動態試驗步驟 24
第四章 試驗結果與分析 29
4.1 試驗規劃 29
4.2 試驗結果 31
4.2.1基本物理性質試驗 31
4.2.2動力三軸試驗 33
4.3 試驗結果分析 35
4.3.1液化強度結果比較 35
4.3.2孔隙水壓比激發曲線 36
4.3.3應力路徑 37
4.3.4體積應變與最大剪應變 37
第五章 結論與建議 40
5.1 結論 40
5.2 建議 41
參考文獻 43
參考文獻 1. Tokimatsu, K., and Seed, H.B., “Evaluation of settlements in sands due to earthquake shaking,” Journal of Geotechnical Engineering Division, Vol. 113, No. GT8, pp. 861-878(1987).
2. Ishihara, K., and Yoshimine, M., “Evaluation of settlements in sand deposits following liquefaction during earthquake,” Soils and Foundations, Vol. 32, No. 1, pp. 173-188(1992).
3. Shamoto, Y., Sato, M., and Zhang, J., “Simplified estimation of earthquake-induced settlements in saturated sand deposits,” Soils and Foundations, Vol. 36, No. 1, pp. 39-50(1996).
4. Shamoto, Y., and Sato, M., “Evaluation of liquefaction-induced settlements in sand deposits,” Proceedings, Symposium on Deformation Behavor of Soil Deposits under Cyclic Loading, JSSMFE, pp. 15-18(1990).
5. Isihara, K., “Liquefaction and flow during earthquakes,” Geotectnique, Vol. 43, No. 3, pp. 351-415(1993).
6. Seed, H.B., and Idriss, I.M., “Simplified procedure for evaluating soil liquefaction potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1249-1274(1971).
7. Nagase, H., and Ishihara, K., “Liquefaction-induced compaction and settlement of sand during earthquakes,” Soils and Foundations, Vol. 28, No. 1, pp. 65-76(1988).
8. Glaser, S.D., “Estimation of surface displacements due to earthquake excitation of saturated sands,” Earthquake Spectra, Vol. 10, No. 3, pp. 489-517(1994).
9. Seed, H.B., “Soil liquefaction and cyclic mobility evaluation for level ground during earthquake,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, pp. 201-255(1979).
10. Tokimatsu, K., and Yoshimi, Y., “Empirical correlation of soil liquefaction based on SPT N-value and fines content,” Soils and Foundations, Vol. 23, No. 4, pp. 56-74(1983).
11. Dobry, R., “Some basic aspects of soil liquefaction during earthquakes,” Earthquake Hazards and the Design of Constructed Facilities in the Eastern United States, Vol. 558, pp. 172-182(1989).
12. De Alba, P., Chan, C.K., and Seed, H.B., “Determination of soil liquefaction characteristics by large-scale laboratory tests,” EERC Report 75-14, Earthquake Engineering Research Center, Universityt of California, Berkeley, CA(1975).
13. Silver, M.L., and Seed, H.B., “Volume changes in sand during cyclic loading,” Journal of Geotechnical Engineering Division, ASCE, Vol. 97, No. 9, pp. 1171-1182(1971).
14. Lee, K., and Albraisa, A., “Earthquake-induced settlements in saturated sands,” Journal of Geotechnical Engineering, ASCE, Vol. 100, No. GT4, pp. 387-405(1974).
15. Ishihara, K., and Watanabe, T., “Sand liquefaction through volume decrease potential,” Soils and Foundations, vol. 16, No. 4, pp. 61-70(1976).
16. Yoshimi, Y., Kuwabara, F., and Tokimatsu, K., “One-dimensional volume change characteristics of sands under very low confining stresses,” Soils and Foundations, Vol. 15, No. 3, pp. 51-60(1975).
17. Vaid, Y.P., Chen, J.C., and Tumi, H., “Confining pressure, grain angularity, and liquefaction,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 3, pp. 1229-1235(1985).
18. Seed, H.B., and Lee, K.L., “Liquefaction of saturated sands during cyclic loading,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No SM6, pp. 105-134(1966).
19. Yoshimi, Y., Tokimatsu, K., Kaneko, O., and Makihora, Y., “Undrained cyclic shear strength of a dense Niigate sand,” Soils and Foundations, Vol. 24, No. 4, pp. 131-145(1984).
20. Kokusho, T., “Cyclic triaxial test of dynamic soil properties for wide strain range,” Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 20, pp. 45-60(1980).
21. Castro, G., and Poulos, S.J., “Factors affecting liquefaction and cyclic mobility,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 103, No GT6, pp.501-516(1977).
22. Ladd, R.S., “Specimen preparation and liquefaction of sands,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 100, No. GT10, pp. 1180-1184(1974).
23. 黃俊鴻、李崇正、黃富國,「新化斷層與南二高交會處之土壤液化評估與防治建議」,交通部國道新建工程局研究報告(1998)。
24. 黃俊鴻、陳正興,「土壤液化評估規範之回顧與前瞻」,地工技術,第70期,第23-44頁(1998)。
25. 黃俊鴻、楊志文、譚志豪、陳正興,「集集地震土壤液化之調查與分析」,地工技術,第77期,第51-64頁(2000)。
26. 亞新工程顧問股份有限公司,「土壤液化評估與處理對策研擬第一期計畫(彰化縣員林鎮、大村鄉及社頭鄉)期初報告」,行政院國家科學委員會委託,(1999)。
27. 林資凱,「水力回填煤灰之動態特性」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
28. 萬鼎工程服務股份有限公司,「麥寮六輕石化工業區大地工程綜合評估顧問工作(Ⅰ、Ⅱ、Ⅲ)總結報告書」,(1999)。
29. 國立中央大學,「雲林離島工業區水力回填土壤之液化實驗報告」,國立台灣大學委託,中壢(1997)。
30. 黃俊鴻、楊志文,「以集集地震案例探討本土液化評估方法之適用性」,2002集集地震液化工程問題研討會論文集,第51-60頁(2002)。
31. 吳偉特、楊騰方,「細料含量在不同程度影響因素中對台灣地區沈積性砂土液化特性之研究」,土木水力季刊,第十四卷,第三期,第59-74頁(1987)。
指導教授 黃俊鴻(Jin-Hung Hwang) 審核日期 2002-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明