博碩士論文 104521104 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:18.224.55.82
姓名 林書佑(Shu-You Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 互補型自我注入式四相位壓控振盪器暨X頻段壓控振盪器整合除頻器與X頻段鎖相迴路之研製
(Complementary Self-Injection-Coupled Quadrature Voltage Controlled Oscillator, X-band VCO with Integrated Frequency Divider and X-band Phase Locked Loop)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文使用tsmcTM 0.18-m與90-nm製程來實現收發機中本地振盪源的相關電路;本論文將先介紹自我注入式之缺點,再分析互補型之運作機制,並以此設計四項為壓控振盪器,此外整合壓控振盪器與除頻器,最後延伸至鎖相迴路之實現。本文內容包含三個電路,內容如下所述:
一、 互補型自我注入式四相位壓控振盪器之研製
本電路使用自我注入式架構實現四相位輸出,並以互補式型態改善原架構之缺點並減少功耗。電路功耗為5.23 mW,頻段的調頻範圍可以從5.11 GHz–5.87 GHz相位雜訊在偏移1 MHz處為-110.95 dBc/Hz,相位誤差為0.29,電路的優化指數(FoM、FoMQ)分別為-178.5 dBc/Hz與-228.69 dBc/Hz,晶片面積為1.12 × 0.73 mm2。
二、 使用轉導提升與電流再利用之壓控振盪器整合除頻器之研製
本電路包含一顆壓控振盪器與電流模式邏輯除頻器(CML Divider),壓控振盪器的部分使用互補式架構提升轉導並降低相位雜訊。壓控振盪器與除頻器電路功耗分別為2.06與4.05 mW,其可調頻率範圍分別為10.52–11.66 GHz與5.26–5.82 GHz,相位雜訊在偏移1 MHz處分別為-106.7 dBc/Hz與-112.3 dBc/Hz,電路的優化指數(FoM)分別為-184.1 dBc/Hz與-178.9 dBc/Hz,晶片面積為0.68 × 0.57 mm2。
三、 X頻段鎖相迴路之研製
本電路為固定整數型鎖相迴路,總功耗為7.59 mW,鎖定範圍為10.74–10.78 GHz,參考突波及方均根時脈抖動分別為-64.71 dBc與1.41 psec,電路的優化指數(FoMSpur、FoMPower、FoMJitter)分別為92.25、0.49、-228.21,晶片面積為0.68 × 0.66 mm2。
摘要(英)
In this thesis, circuits were fabricated in tsmcTM 0.18-m and 90-nm CMOS process for realizing the local oscillation source in the transceiver. This thesis will introduce the drawbacks of conventional self-injection-coupled technique, and then analyzes the operation mechanism of the complementary type. Moreover, the integration of voltage-controlled oscillator and frequency divider was realized with the same architecture to realize the phase-locked loop (PLL) circuit.
The first work in Chapter 2 implements a QVCO by using self-injection-coupled technique and utilizes complementary coupled pair to resolve DC offset problem. This design was fabricated in tsmcTM 0.18-m CMOS process. The dc power consumption is 5.23 mW for a 0.75 V supply voltage. The measured tuning range is from 5.11 to 5.87 GHz. The measured phase noise is -110.95 dBc/Hz at 1 MHz offset and the phase error is 0.29. The figure of merit (FoM,FoMQ) of circuit are -178.5 dBc/Hz and -228.69 dBc/Hz, respectively. The chip area is 1.12 × 0.73 mm2.
Chapter 3 presents two circuits. One of them is a VCO integrated with a frequency divider. In VCO design, complementary cross-coupled topology is adopted. The frequency divider topology is a current mode logic divider (CML). This design was fabricated in tsmcTM 90-nm CMOS process. The dc power consumption of the VCO and CML are 2.06 mW and 4.05 mW, respectively. The measured tuning range of the VCO and CML are from 10.52 to 11.66 GHz and 5.26 to 5.82 GHz, respectively. The phase noise of the VCO and CML are -106.7 dBc/Hz and -112.3 dBc/Hz at 1 MHz offset. The figure of merit (FoM) of the VCO and CML are -184.1 dBc/Hz and -178.9 dBc/Hz, respectively. The chip area is 0.68 × 0.57 mm2.
The last work in Chapter 3 implements an X-band integer-N phase locked loop. This design was fabricated in tsmcTM 90-nm CMOS process. The division ratio of the PLL is 256. The total dc power consumption is 7.59 mW. The measured locking range is from 10.74 to 10.78 GHz with the reference frequency from 41.2 to 42.1 MHz. The measured bandwidth is 1 MHz. The reference spur and RMS jitter are -64.71 dBc and 1.41 ps, respectively. The power efficiency is 0.71. The figure of merit (FoMSpur, FoMPower, FoMJitter ) of circuit are 92.25, 0.49, -228.21, respectively. The chip area is 0.68 × 0.66 mm2.
關鍵字(中) ★ 振盪器
★  鎖相迴路
關鍵字(英) ★ Oscillator
★  Phase Lock Loop
論文目次
摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 1
1-3 章節敘述 1
第二章 互補型自我注入式四相位壓控振盪器 2
2-1 四相位壓控振盪器簡介 2
2-2 電路架構與分析 3
2-2-1 自我注入式架構直流偏移分析 3
2-2-2 互補型自我注入式架構 6
2-2-3 雙模振盪簡介與分析 9
2-2-4 二次諧波抑制技術簡介 13
2-2-5 互補型自我注入式四相位壓控振盪器設計 14
2-2-6 量測與模擬結果 17
2-2-7 結果比較與討論 27
第三章 X頻段鎖相迴路 30
3-1 鎖相迴路架構介紹 30
3-1-1 鎖相迴路簡介 30
3-1-2 閉迴路特性分析 35
3-2 X頻段壓控振盪器暨除頻器整合電路架構與分析 38
3-2-1 電流模式邏輯除頻器設計 38
3-2-2 X頻段壓控振盪器設計 41
3-2-3 X頻段壓控振盪器暨除頻器整合電路設計 43
3-2-4 量測與模擬結果 44
3-2-5 結果與討論 54
3-3 X頻段鎖相迴路電路架構與分析 55
3-3-1 X頻段鎖相迴路電路設計 55
3-3-2 X頻段壓控振盪器 56
3-3-3 電流模式邏輯除頻器 58
3-3-4 雙轉單緩衝器 59
3-3-5 真單一相位時脈除頻器 60
3-3-6 全擺幅緩衝器 61
3-3-7 相位頻率偵測器 62
3-3-8 充電汞 64
3-3-9 迴路濾波器 67
3-3-10 量測與模擬結果 70
3-3-11 結果比較與討論 79
第四章 結論 82
4-1 結論 82
4-2 未來方向 83
參考文獻 84
參考文獻
[1] A. Rofougaran, J. Rael, M. Rofougaran and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” IEEE J. Solid-State Circuits, Feb. 1996, pp. 392 – 393.
[2] P. Andreani, A. Bonfanti, L. Romano and C. Samori, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1737-1747, Dec 2002.
[3] H.-R Kim, C.-Y Cha, S.-M Oh, M.-S Yang and S.-G Lee, “A very low-power quadrature VCO with back-gate coupling,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 952-955, June 2004.
[4] Y. C. Lo and J. S.-Martinez, “A 5-GHz CMOS LC quadrature VCO with dynamic current-clipping coupling to improve phase noise and phase accuracy,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 7, pp. 2632-2640, July 2013.
[5] C.-H. Lin, and H.-Y. Chang, “A low-phase-noise CMOS quadrature voltage-controlled oscillator with self-injeciton-coupled technique,” IEEE Trans. Circuit and Syst. II, v ol. 59, pp. 623-627, Feb. 2012.
[6] S. Li, I. Kipnis and M. Ismail, “A 10-GHz CMOS quadrature LC-VCO for multirate optical applications,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1626-1634, Oct. 2003.
[7] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb 1998.
[8] E. Hegazi, H. Sjoland and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec 2001.
[9] D. Murphy, H. Darabi and H. Wu, “A VCO with implicit common-mode resonance,” IEEE ISSCC Dig. Tech. Papers , Feb. 2015, pp. 442–443.
[10] H. Kim, S. Ryu, Y. Chung, J. Choi and B. Kim, “A low phase-noise CMOS VCO with harmonic tuned LC tank,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2917-2924, July 2006.
[11] H. Moon and I. Nam, “1.3 V low close-in phase noise NMOS LC-VCO with parallel PMOS transistors,” Electron. Lett., vol. 44, no. 11, pp. 676-678, May 22 2008.
[12] C. Y. Jeong and C. Yoo, “5-GHz low-phase noise CMOS quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 11, pp. 609-611, Nov. 2006.
[13] Y. W. Ou, Y. C. Chang, S. G. Lin, D. C. Chang and H. K. Chiou, “Full-span error calibration method for on-chip quadrature accuracy measurement,” IEEE Int. Instrum. Meas. Technol. Conf. (I2MTC), May. 2015, pp. 1194-1197.

[14] Y.-C. Chang, Y.-C. Chiu, S.-G. Lin, Y.-Z. Juang and H.-K. Chiou, “High phase accuracy on-wafer measurement for quadrature voltage-controlled oscillator,” in Proc. EuMC , Oct. 2007, pp. 340–343.
[15] K. W. Cheng and Y. R. Tseng, “5 GHz CMOS quadrature VCO using trifilar-transformer-coupling technology,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 717-719, Sept. 2016.
[16] Y. Huo, X. Dong and P. Lu, “A LC quadrature VCO with wide tuning range for TRPC-UWB application in 0.13-µm CMOS,” in Proc. 12th IEEE Int. Conf. Solid-State Integr. Circuit Technol. (ICSICT), Oct. 2014, pp. 1-3.
[17] J. W. Wu, H. H. Wu, K. C. Hsu and C. C. Chen, “A back-gate coupling quadrature voltage-control oscillator embedded with self body-bias schema,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 3, pp. 146-148, March 2013.
[18] H. H. Lai, I. S. Shen and C. F. Jou, “Colpitts current-reused QVCO based on capacitor coupling,” in Proc. Asia-Pacific Microwave Conf., pp. 1638-1641, Dec. 2011.
[19] H. Y. Chang and Y. T. Chiu, “K-band CMOS differential and quadrature voltage-controlled oscillators for low phase-noise and low-power applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 46-59, Jan. 2012.
[20] U. Singh, M. M. Green, “Dynamics of high-frequency CMOS dividers,” IEEE Int. Circuits and Systems Symp , 2002, pp. 421-424.
[21] S. Wang and C. Y. Xiao, “A 7/24-GHz CMOS VCO with high band ratio using a current-source switching topology,” IEEE Trans. Ultra son. Ferroelectr. Freq. Control, vol. 63, no. 5, pp. 790-795, May 2016.
[22] S. L. Liu, K. H. Chen and A. Chin, "A dual-resonant mode 10/22-GHz VCO with a novel inductive switching approach," IEEE Trans. Microw. Theory Tech., vol. 60, no. 7, pp. 2165-2177, July 2012.
[23] S. Rong and H. C. Luong, “Analysis and design of transformer-based dual-band VCO for software-defined radios,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 3, pp. 449-462, March 2012.
[24] S. J. Yun, H. D. Lee, K. D. Kim, S. G. Lee and J. K. Kwon, “A wide-tuning dual-band transformer-based complementary VCO,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 6, pp. 340-342, June 2010.
[25] H. Zheng and H. C. Luong, “A double-balanced quadrature-input quadrature-output regenerative frequency divider for UWB synthesizer applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 9, pp. 2944-2951, Oct. 2008.
[26] S. Ma, J. Jiang, G. Zhou, N. Li, F. Ye and J. Ren, “A 50MHz–812MHz, 700mW low-power PLL with a constant KVCO ring oscillator,” Proc. of 12 th Int. Conf. on Solid State and Integrated Circuit Technology (SSICT 2014), Oct 2014, pp. 1–3.
[27] J. Li, N. Ning, Y. Hu and K. Wu, “A low-jitter low-area PLL with process-independent bandwidth,” In 11th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2012 , pp. 1- 3.
[28] H. Notani, H. Kondoh and Y. Matsuda, “A 622-MHz CMOS phase-locked loop with precharge-type phase frequency detector,” 1994 IEEE Symposium on VLSI circuits. Digest of Technical Papers, pp. 129-130, June 1994.
[29] D. K. Jeong, G. Borriello, D. A. Hodges and R. H. Katz, “Design of PLL-based clock generation circuits,” IEEE J. Solid-State Circuits, vol. 22, no. 2, pp. 255-261, Apr 1987.
[30] Y. W. Chen, Y. H. Yu and Y. J. E. Chen, "A 0.18-μm CMOS dual-band frequency synthesizer with spur reduction calibration," IEEE Microw. Wireless Compon. Lett., vol. 23, no. 10, pp. 551-553, Oct. 2013.
[31] K.-H. Cheng, K.-W. Hong, C.-F. Hsu, and B.-Q. Jiang, “An all-digital clock synchronization buffer with one cycle dynamic synchronizing,” IEEE Trans. Very Large Scale Integr. Syst. , vol. 20, no. 10, pp. 1818- 1827, Oct. 2012.
[32] X. Gao, E. Klumperink, P. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of-merit for phase-locked loops,” IEEE Trans. Circuits Syst. II, Exp. Briefs , vol. 56, no. 2, pp. 117–121, Feb. 2009.
[33] A. Fahim, “A compact, low-power low-jitter digital PLL,” in Proc. European Solid-State Circuits Conf. (ESSCIRC) , Sep. 2003, pp. 101–104.
[34] X. Gao, E. A. M. Klumperink, M. Bohsali and B. Nauta, “A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N2,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3253-3263, Dec. 2009.
[35] S. Min, T. Copani, S. Kiaei and B. Bakkaloglu, “A 90-nm CMOS 5-GHz ring-oscillator PLL With delay-discriminator-based active phase-noise cancellation," IEEE J. Solid-State Circuits, vol. 48, no. 5, pp. 1151-1160, May 2013.
[36] W. S. Chang, P. C. Huang and T. C. Lee, “A fractional-N divider-less phase-locked loop with a subsampling phase detector,” IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2964-2975, Dec. 2014.
[37] C.-C. Li et al., “A 0.034mm2, 725fs RMS jitter, 1.8%/V frequency-pushing, 10.8–19.3GHz transformer-based fractional-N all-digital PLL in 10nm FinFET CMOS,” in Proc. IEEE Symp. VLSI Circuits (VLSI-Circuits) , Jun. 2016, pp. 1–2.
[38] Y. H. Tseng, C. W. Yeh and S. I. Liu, “A 2.25–2.7 GHz area-efficient subharmonically injection-locked fractional-N frequency synthesizer with a fast-converging correlation loop,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 4, pp. 811-822, April 2017.
[39] L. Kong and B. Razavi, “A 2.4 GHz 4 mW integer-N inductorless rf synthesizer,” in IEEE J. Solid-State Circuits, vol. 51, no. 3, pp. 626-635, March 2016.
[40] A. Sai, Y. Kobayashi, S. Saigusa, O. Watanabe, et al., “A digitally stabilized type-III PLL using ring VCO with 1.01ps rms integrated jitter in 65nm CMOS,” ISSCC Dig. Tech. Papers , pp. 248-250, Feb. 2012.
[41] Y. C. Huang, C. F. Liang, H. S. Huang and P. Y. Wang, “A 2.4GHz ADPLL with digital-regulated supply-noise-insensitive and temperature-self-compensated ring DCO,” ISSCC Dig. Tech. Papers , pp. 270-271, Feb. 2014.
[42] Y.-L. Yeh, S.-Y. Huang, Y.-E. Shen, and H.-Y. Chang, “A 90 nm CMOS low phase noise sub-harmonically inje ction-locked voltage-controlled oscillator with FLL self-alignment technique,” in IEEE MTT-S Int. Microw. Symp. Dig. , San Francisco, CA, USA, May 2016, pp. 1–4.
[43] C. H. Lee et al., “A 2.7 GHz to 7 GHz fractional-N LC-PLL utilizing multi-metal layer SoC technology in 28 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 856-866, April 2015.
[44] H. Y. Chang, Y. L. Yeh, Y. C. Liu, M. H. Li and K. Chen, “A low-jitter low-phase-noise 10-GHz sub-harmonically injection-locked PLL with self-aligned DLL in 65-nm CMOS Technology,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 3, pp. 543-555, March 2014.
[45] 戴瑋佑, “CMOS Voltage Controlled Oscillator with Magnetically Coupled Transformer Switch for Dual-band Application and 5 GHz VCO and Divider Integrated Circuit,” 碩士論文,中央大學2015
[46] 曾紹齊, “Implementations on Dual-band CMOS Quadrature Voltage Controlled Oscillator Using 4th Order Resonator, 5 GHz Gm-boosted VCO with Integrated Frequency Divider and X-band Quadrature Phase Locked Loop,” 碩士論文,中央大學2016
[47] 劉深淵,楊清淵,鎖相迴路,滄海書局,民國一百年。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2017-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明