博碩士論文 103521122 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:168 、訪客IP:52.15.160.43
姓名 陳品豪(Ping-Hau Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 低功耗I/Q寬頻接收機前端電路應用於C/X頻帶
(A Low Power I/Q Wideband Receiver Front End for C/X Band Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文分別利用tsmcTM 180 nm及tsmcTM 90 nm CMOS製程設計低雜訊放大器與接收機,CMOS製程的缺點為低轉導能力 ( gm )、高基板損耗、低電晶體耐壓,其中轉導能力又與雜訊指數正相關,因此雜訊指數為接收機設計的一大挑戰,為了解決轉導能力不足和基板損耗過大的問題,研究主題為如何利用變壓器寬頻設計克服轉導能力不足,並對於接收機進行雜訊分析並最佳化設計。實現的第一顆電路,係利用閘極與源極變壓器得到輸入寬頻響應,並推導變壓器耦合值對電感的關係式,藉由提升閘級電感讓高頻轉導值提升進行寬頻低雜訊放大器應用於C~X頻帶設計。另外,修改第一顆電路的體極自我偏壓設計,第二顆電路為一低功耗寬頻接收機電路應用於C~X頻帶的設計。考慮各級之間阻抗值與電壓模態、電流模態的區別,經由公式推導可以得出各級在低功耗下能表現的最佳雜訊指數。轉導能力不足的問題可由反向放大器架構器解決,使得原本共源極放大器的轉導能力能提升一倍,通道頻寬由轉阻放大器 ( Trans-impedance Amplifier, TIA ) 的RC並聯回授決定。第三顆電路為ㄧ整合I/Q接收機,使用四分之一責任週期 ( 25% Duty Cycle )本地振盪源,並將接收訊號分為I/Q通道以克服I/Q 路徑交調失真,並解決鏡像問題。
使用0.18m CMOS 設計寬頻低雜訊放大器,使用閘極與源極變壓器得到輸入寬頻響應,後級利用並聯電阻回授達到提升整體線性度的效果。量測增益為12.05 dB,頻寬為4.5 ~ 10.1 GHz,雜訊指數為3.01 dB,線性度IIP3為2.5 dBm,整體功耗為9.71 mW。
使用0.18 m CMOS 設計寬頻低雜訊放大器應用於0.7~11.9 GHz,使用閘極與源極變壓器得到輸入寬頻響應,並利用耦合值增加閘極電感,在等效公式上增感的效應會使得高頻轉導能力提升。本電路量測增益為10.3 dB,頻寬為0.8 ~ 9.1 GHz,雜訊指數為4.3 dB,線性度IIP3為0.3 dBm,整體功耗為13.71 mW,面積僅 0.71 × 0.57 mm2。
擬設計之低功耗寬頻直接降頻接收機之頻寬為5~11.7 GHz,在低功耗下取得每個子電路的最佳雜訊指數,接著決定接收機各級之間的阻抗關係,並以電流模態操作。量測轉換增益為35.2 dB,頻寬為3 ~ 11.7 GHz,雙邊帶雜訊為2.47 dB,線性度IIP3為-22.5 dBm,LO-RF 隔離度為-78 dBm,整體功耗為24 mW,面積1.124 × 0.56 mm2。
C/X頻帶寬頻低功耗I/Q直接降頻接收機整合除頻器於單一晶片,利用1/4 LO 責任週期於混頻器,解決IQ交調失真。此直接降頻接收機具有增益線性度三種模態的轉換,量測轉換增益為27.2 dB,頻寬為3 ~ 10 GHz,雙邊帶雜訊為5.9 dB,線性度IIP3為-9 dBm,LO-RF 隔離度為-100 dBm,整體功耗為30.8 mW,面積1.04 × 1 mm2。
摘要(英)
This thesis presents a fully integrated receiver (Rx) front end and low noise amplifiers (LNAs) in tsmcTM 90 nm and 180 nm CMOS technologies. The CMOS RX front end with wideband, low power and low noise is the most challenging circuit due to its low gm, high substrate loss, and low breakdown voltage. Therefore, the main goal of this thesis is to adopt transformer feedback technique to achieve high gm value of the transistor. Meanwhile, the adopted technique also improves the performance in noise figure (NF) and bandwidth. Two LNAs were designed by using gate-source transformer as the wideband matching network which increases the gm value at high frequency regime. The coupling equation of this transformer feedback was derived in this thesis. An inverter type LNA, which has higher gm than CS amplifier, was designed in I-path receiver to obtain a wideband and high integration receiver. The noise contributions of the passive mixer, TIA (Trans-Impedance Amplifier) and the RX front end operated in voltage or current mode are particularly considered to obtain wideband low noise performance. It has to be noted that RC shunt-shunt feedback TIA determines the channel bandwidth of the receiver. After then, the I-path RX front end were integrated into fully integrated I/Q RX front end which was designed by utilizing 25% LO duty cycle to solve the major concerns of the I/Q receiver, i.e., I/Q cross talk and image frequency problems.
The first implemented wideband LNA for C/X band was designed by using gate-source transformer feedback technique in tsmcTM 180 nm CMOS. The transformer feedback technique improves the linearity of the LNA. The measured peak gain and |S11| are 12.04 dB and below -10 dB from 4.5 GHz to 10.1 GHz, respectively. The measured noise figure (NF) and IIP3 are 3.04 dB and 2.5 dBm, respectively. The total power consumption is 9.71 mW.
The second LNA exhibits a wideband performance from 0.7 to 11.9 GHz which was designed an inverter type LNA with a gate-source transformer feedback in tsmcTM 180 nm CMOS. The gm value in the inverter type LNA can be peaked by gate-source transformer feedback topology. The measured peak gain and |S11| are 10.3 dB and below -10 dB from 0.8 GHz to 9.1 GHz, respectively. The measured NF and IIP3 are 4.3 dB and 0.3 dBm, respectively. The power consumption is 13.71 mW. The chip area including pad is 0.71 × 0.57 mm2.
The third design is a low power wideband receiver which integrates an LNA, a Balun, a passive mixer, and a TIA in tsmcTM 90 nm CMOS. These noise contributions of the passive mixer, TIA and the RX front end operated in voltage or current mode are particularly considered to obtain wideband low noise performance. The measured peak conversion gain and |S11| are 35.2 dB and below -10 dB from 3 GHz to 11.7 GHz, respectively. The measured NF and IIP3 are 2.47 dB and -22.5 dBm, respectively. The measured LO to RF isolation is below -78 dB. The total power consumption is only 24 mW. The core chip area is 1.124 × 0.56 mm2.
The fourth design is a low power wideband I/Q receiver which integrated an LNA, a Balun, a pair of I/Q passive mixers, a 25% duty cycle LO and a TIA in tsmcTM 90 nm CMOS. This fully integrated I/Q receiver also provides a three-level gain control by utilizing variable resistors that enhances the linearity performance. The measured peak conversion gain and |S11| are 27.2 dB and below -10 dB from 5 GHz to 10 GHz, respectively. The measured NF and IIP3 are 5.9 dB and -9 dBm, respectively. The measured LO to RF isolation is below -100 dB, The total power consumption is only 30.8 mW. The core chip area is 1.04 × 1 mm2.
關鍵字(中) ★ 接收機
★ 低雜訊放大器
★ 混頻器
★ 轉阻放大器
關鍵字(英) ★ Receiver
★ LNA
★ Mixer
★ TIA
論文目次
摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 XIII
第一章 緒論 1
1-1 研究現況 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 寬頻接收機 3
2-1 寬頻接收機簡介 3
2-2 接收機分類 5
2-3 接收機型態 6
2-4 接收機子電路 8
第三章 寬頻低雜訊放大器應用於C/X 頻帶 9
3-1 使用0.18 mm CMOS 設計寬頻低雜訊放大器 9
3-1-1 研究動機 9
3-1-2 輸入寬頻匹配 9
3-1-3 電晶體雜訊點挑選 11
3-1-4 電路模擬與量測結果 13
3-1-5 結果與討論 17
3-2 使用0.18 mm CMOS 設計寬頻低雜訊放大器應用於0.7~11.9 GHz 19
3-2-1 研究動機 19
3-2-2 電路架構與設計 19
3-2-3 電路模擬與量測結果 25
3-2-4 結果與討論 30
第四章 低功耗寬頻接收機前端電路應用於C/X頻帶 33
4-1 設計低功耗寬頻直接降頻接收機應用於5~11.7 GHz 33
4-1-1 研究動機 33
4-1-2 電路架構與設計 34
4-1-3 電路模擬與量測結果 54
4-1-4 結果與討論 62
4-2寬頻低功耗I/Q直接降頻接收機整合除頻器應用於C/X頻帶 64
4-2-1 研究動機 64
4-2-2 電路架構與設計 64
4-2-3 電路模擬與量測結果 73
4-2-4 結果與討論 83
第五章 結論 85
5-1 電路總結 85
5-2 未來方向 86
參考文獻 87
參考文獻
[1] Heng Zhang, Student Member, Xiaohua Fan, Member, and Edgar Sánchez Sinencio, Fellow, “A low-power, linearized, ultra-wideband LNA design technique,” IEEE J. Solid-State Circuits., vol. 44, no. 2, Feb. 2009.
[2] Bonghyuk Park, Sangsung Choi, and Songcheol Hong, “A low-noise amplifier with tunable interference rejection for 3.1- to 10.6-GHz UWB systems,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, Jan. 2010.
[3] Chang-Tsung Fu, Chien-Nan Kuo, Member, and Stewart S. Taylor, Fellow, “Low-noise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 4, Apr. 2010.
[4] Yo-Sheng Lin, Chien-Chin Wang, Guan-Lin Lee, and Chih-Chung Chen, “High-performance wideband low-noise amplifier using enhanced -match input network,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 3, Mar. 2014.
[5] Po-Yu Chang and Shawn S. H. Hsu, Member, “A compact 0.1–14-GHz ultra-wideband low-noise amplifier in 0.13-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 10, Oct. 2010.
[6] Chen-Ming Li, Ming-Tsung Li, Kuang-Chi He, and Jenn-Hwan Tarng, “A low-power self-forward-body-bias CMOS LNA for 3–6.5-GHz UWB receivers,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, Feb. 2010.
[7] M. Khurram and S.M.Rezaul Hasan, “Series peaked noise matched gm-boosted 3.1 –10.6 GHz CG CMOS differential LNA for UWB WiMedia,” Electron. Lett., vol. 47,no.24,pp. 1346-1348,Nov.2011.
[8] Y. S. Lin, J. F. Chang, and S. S. Lu, “Analysis and design of CMOS distributed amplifier using inductively-peaking cascaded gain cell for UWB systems,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2513–2524, Oct. 2011.
[9] Chun-Hsing Li, Chien-Nan Kuo, and Ming-Ching Kuo, “A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 11, Nov. 2012.
[10] Hao Wu, Ning-Yi Wang, Yuan Du, and Mau-Chung Frank Chang, “A blocker-tolerant current mode 60-GHz receiver with 7.5-GHz bandwidth and 3.8-dB minimum NF in 65-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 3, Mar. 2015.
[11] Sven Karsten Hampel, Oliver Schmitz, Marc Tiebout, Koen Mertens, and Ilona Rolfes, “9-GHz wideband CMOS RX and TX front-ends for universal radio applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 4, Apr. 2012.
[12] S. Lee, J. Bergervoet, K.S. Harish, D. Leenaerts, R. Roovers, R. van de Beek, G. van der Weide, “A broadband receive chain in 65nm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers., Feb. 2007.
[13] Imad ud Din, Johan Wernehag, Stefan Andersson, Sven Mattisson, and Henrik Sjöland, “Wideband saw-less receiver front-end with harmonic rejection mixer in 65-nm CMOS,” IEEE Trans. Circuits and Syst. II: Exp. Briefs., vol. 60, no. 5, May. 2013.
[14] Sy-Chyuan Hwu and Behzad Razavi, “An RF receiver for intra-band carrier aggregation,” IEEE J. Solid-State Circuits., vol. 50, no. 4, Apr. 2015.
[15] Mikko Kaltiokallio, Ville Saari, Sami Kallioinen, Aarno Parssinen, and Jussi Ryynanen, Member, “Wideband 2 to 6 GHz RF front-end with blocker filtering,” IEEE J. Solid-State Circuits., vol. 47, no. 7, Jul. 2012.
[16] Charles Wu, Yanjie Wang, Borivoje Nikolić, and Christopher Hull, “An interference-resilient wideband mixer-first receiver with lo leakage suppression and I/Q correlated orthogonal calibration,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 4, Apr. 2016.
[17] Caroline Andrews, and Alyosha C. Molnar, “A passive mixer-first receiver with digitally controlled and widely tunable RF interface,” IEEE J. Solid-State Circuits., vol. 45, no. 12, Dec. 2010.
[18] Zhicheng Lin, Pui-InMak, and Rui P. Martins, “A 0.14-mm2 1.4-mW 59.4-dB-SFDR 2.4-GHz ZigBee/WPAN receiver exploiting a “Split-LNTA+ 50% LO” Topology in 65-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 7, Jul. 2014.
[19] Stephan C. Blaakmeer, Eric A. M. Klumperink, Domine M. W. Leenaerts, and Bram Nauta, “Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling,” IEEE J. Solid-State Circuits., vol. 43, no. 3, Jun. 2008.
[20] Rong-Fu Ye, Tzyy-Sheng Horng, and Jian-Ming Wu, “Low-noise and high-linearity wideband CMOS receiver front-end stacked with glass integrated passive devices,” IEEE J. Solid-State Circuits., vol. 62, no. 5, May. 2014.
[21] Ahmad Mirzaei, and Hooman Darabi, “Analysis of imperfections on performance of 4-phase passive-mixer-based high-Q bandpass filters in SAW-less receivers,” IEEE Trans. Circuits Syst. I: Reg. Papers., vol. 58, no. 5, May. 2011.
[22] Hajir Hedayati, Wing-Fat Andy Lau, Namsoo Kim, Vladimir Aparin, and Kamran Entesari, “A 1.8 dB NF blocker-filtering noise-canceling wideband receiver with shared TIA in 40 nm CMOS,” IEEE J. Solid-State Circuits., vol. 50, no. 5, May. 2015.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2017-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明