博碩士論文 103521004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.190.239.239
姓名 邱郁廷(Yu-Ting Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於雙倍資料率同步動態隨機存取記憶體之全數位式延遲鎖定迴路
(An All-Digital Delay-Locked Loop for Double Data Rate Synchronous Dynamic Random Access Memory Application)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著消費性電子的蓬勃發展,中央處理器需操作在更高速度以滿足更高品質的需求,而雙倍資料率同步動態隨機存取記憶體作為中央處理器的重要周邊亦無法倖免。然而,越高的操作速度代表著越大百分比的時脈扭曲,因此,時脈同步是必須的。在傳統延遲鎖定迴路電路設計當中,操作速度瓶頸往往受限於電路本身之固有延遲,若是高於操作頻率上限或低於操作頻率下限,則電路將發生阻塞鎖定或諧波鎖定。為了避免阻塞鎖定,許多延遲鎖定迴路被設定為單方向追鎖,而諧波鎖定在單一相位輸出之延遲鎖定迴路當中可被忽略。然而,應用於雙倍資料率同步動態隨機存取記憶體之延遲鎖定迴路除了同相位之外,電路需額外提供正交相位,若發生諧波鎖定,則會造成相位錯誤或遺失,進而導致誤動作。
因此,本論文提出一應用於雙倍資料率同步動態隨機存取記憶體之全數位式延遲鎖定迴路,透過所提出之諧波鎖定偵測與自我校正技術,本論文晶片可實現100 MHz至2.7 GHz之操作範圍,其成果不僅適用於第四代產品,也能向下相容於第一代至第三代之產品。此外,本論文晶片使用TSMC 90 nm CMOS 1P9M (TN90GUTM)製程來實現,電路操作電壓為1 V。根據量測結果,本論文晶片輸出時脈之週期至週期抖動峰對峰值小於0.019 UI、均方根值小於0.003 UI,而週期抖動峰對峰值小於0.014 UI、均方根值小於0.003 UI,電路功率消耗小於49.8 mW,整體晶片面積為0.903 mm^2,核心電路面積為0.089 mm^2。
摘要(英)
With the flourishing of consumer electronics, Central Processing Unit (CPU) has to be operated in higher frequency to meet the higher quality requirement. The Double Data Rate Synchronous Dynamic Random Access Memory (DDR SDRAM) as the important peripheral of CPU cannot be spared, either. However, the higher operating frequency indicates the larger percentage of clock skew. Therefore, the clock synchronization is necessary. In a normal Delay-Locked Loop (DLL) design, the bottleneck of operating frequency is always limited by the inherent delay of the circuits. If the operating frequency is higher than the upper limit or lower than the lower limit, the stuck lock or harmonic lock will be happened. To avoid the stuck lock, many DLLs were designed as tracking for only one direction. As for the harmonic lock, it can be ignored in the DLLs which only output in phase signal. However, the phase requirement of DLL applied in DDR SDRAM is not only in phase signal, but quadrature phase signal. If the harmonic lock occurs in the DLL applied in DDR SDRAM, the quadrature phase signal will be fault or miss, which induce the mistakes.
To avoid the quadrature phase error causing by the harmonic lock, a novel harmonic lock detection and auto calibration technique is propose in this thesis. The chip was fabricated using TSMC 90 nm CMOS 1P9M (TN90GUTM) process with a 1-V supply voltage. The whole chip area and core area are 0.903 mm^2 and 0.089 mm^2, respectively. According to the measurement results, the operating frequency range of chip is from 100 MHz to 2.7 GHz with the power consumption less than 49.8 mW. The peak-to-peak and room-mean-square (RMS) cycle-to-cycle jitter are less than 0.019 UI and 0.003 UI, respectively. The peak-to-peak and RMS period jitter are less than 0.014 UI and 0.003 UI, respectively. These achievements make the chip suit for not only 4th DDR SDRAM, but from 1st to 3rd DDR SDRAM.
關鍵字(中) ★ 延遲鎖定迴路
★ 雙倍資料率同步動態隨機存取記憶體
關鍵字(英) ★ Delay-Locked Loop
★ Double Data Rate Synchronous Dynamic Random Access Memory
論文目次
摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 xi
表目錄 xix
第1章 緒論 1
1.1 研究背景與動機 1
1.2 論文架構 3
第2章 時脈同步電路與責任週期校正電路簡介 5
2.1 時脈同步電路 5
2.1.1 閉迴路時脈同步電路[2] 6
2.1.2 開迴路時脈同步電路[3] 7
2.2 責任週期校正電路 8
2.2.1 閉迴路責任週期校正電路[4] 8
2.2.2 開迴路責任週期校正電路[5] 9
第3章 諧波鎖定偵測與自我校正技術 11
3.1 操作範圍與錯誤鎖定 11
3.2 諧波鎖定分析 12
3.3 諧波鎖定偵測與自我校正技術 15
第4章 應用於雙倍資料率同步動態隨機存取記憶體之全數位式延遲鎖定迴路 19
4.1 系統架構與操作原理 19
4.1.1 系統架構 20
4.1.2 操作原理 21
4.2 子電路與設計考量 22
4.2.1 偵測電路 22
4.2.1.1 時間至數位轉換器 22
4.2.1.1.1 自我校正邊緣偵測器 24
4.2.1.1.2 可重複使用量測延遲元件 26
4.2.1.2 相位比較器 27
4.2.2 控制電路 28
4.2.2.1 時序控制器 29
4.2.2.2 粗調控制器 30
4.2.2.3 細調控制器 31
4.2.3 延遲電路 32
4.2.3.1 相位分佈器 32
4.2.3.2 粗調延遲線 33
4.2.3.3 細調延遲線 34
4.2.3.4 邊緣合成器 35
第5章 實驗結果 37
5.1 晶片佈局與模擬結果 37
5.1.1 晶片佈局 37
5.1.2 模擬結果 38
5.2 量測考量與量測結果 42
5.2.1 量測考量 42
5.2.2 量測結果 45
第6章 結論與未來展望 85
6.1 結論 85
6.2 未來展望 85
參考文獻 87
出版清單 89
研討會論文 89
參考文獻
[1] D. H. Jung, K. H. Ryu, and S.-O. Jung, “A 90° phase-shift DLL with closed-loop DCC for high-speed mobile DRAM interface,” IEEE Trans. Consum. Electron., vol. 56, no. 4, pp. 2400–2405, Nov. 2010.
[2] A. Hatakeyama, H. Mochizuki, T. Aikawa, M. Takita, Y. Ishii, H. Tsuboi, S. Fujioka, S. Yamaguchi, M. Koga, Y. Serizawa, K. Nishimura, K. Kawabata, Y. Okajima, M. Kawano, H. Kojima, K. Mizutani, T. Anezaki, M. Hasegawa, and M. Taguchi, “A 256-Mb SDRAM using a register-controlled digital DLL,” IEEE J. Solid-State Circuits, vol. 32, no. 11, pp. 1728–1734, Nov. 1997.
[3] T. Saeki, Y. Nakaoka, M. Fujita, A. Tanaka, K. Nagata, K. Sakakibara, T. Matano, Y. Hoshino, K. Miyano, S. Isa, S. Nakazawa, E. Kakehashi, J.M. Drynan, M. Komuro, T. Fukase, H. Iwasaki, M. Takenaka, J. Sekine, M. Igeta, N. Nakanishi, T. Itani, I. Yoshida, K. Yoshino, S. Hashimoto, T. Yoshii, M. Ichinose, T. Imura, M. Uziie, S. Kikuchi, K. Koyama, Y. Fukuzo, and T. Okuda, “A 2.5-ns clock access, 250-MHz, 256-Mb SDRAM with synchronous mirror delay,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1656–1668, Nov. 1996.
[4] Y.-J. Min, C.-H. Jeong, K.-Y. Kim, W. H. Choi, J.-P. Son, C. Kim, and S.-W. Kim, “A 0.31–1 GHz Fast-Corrected Duty-Cycle Corrector With Successive Approximation Register for DDR DRAM Applications,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 8, pp. 1524–1528, June 2011.
[5] C. Jeong, C. Yoo, J.-J. Lee, and J. Kih, “Digital delay locked loop with open-loop digital duty cycle corrector for 1.2Gb/s/pin double data rate SDRAM,” Proc. The 30th Eur. Solid-State Circuits Conf., Leuven, Belgium, Belgium, Sept. 2004, pp. 379–382.
[6] J.-H. Bae, J.-H. Seo, H.-S. Yeo, J.-W. Kim, and H.-J. Park, “An All-Digital 90-Degree Phase-Shift DLL with Loop-Embedded DCC for 1.6Gbps DDR Interface,” Proc. IEEE Custom Integr. Circuits Conf., San Jose, California, Sept. 2007, pp. 373–376.
[7] H. Kang, K. Ryu, D. H. Jung, D. Lee, W. Lee, S. Kim, J. Choi, and S.-O. Jung, “Process Variation Tolerant All-Digital 90° Phase Shift DLL for DDR3 Interface,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 10, pp. 2186–2196, Oct. 2012.
[8] K. Ryu, D. H. Jung, and S.-O. Jung, “Process-Variation-Calibrated Multiphase Delay Locked Loop With a Loop-Embedded Duty Cycle Corrector,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 1, pp. 1–5, Jan. 2014.
[9] D.-H. Jung, K. Ryu, J.-H. Park, and S.-O. Jung, “All-Digital 90° Phase-Shift DLL With Dithering Jitter Suppression Scheme,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 3, pp. 1015–1024, Mar. 2016.
[10] R.-J. Yang and S.-I. Liu, “A 2.5 GHz All-Digital Delay-Locked Loop in 0.13 μm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2338–2347, Oct. 2007.
[11] D. Shin, J. Song, H. Chae, and C. Kim, “A 7 ps Jitter 0.053 mm2 Fast Lock All-Digital DLL With a Wide Range and High Resolution DCC,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2437–2451, Aug. 2009.
[12] B.-G. Kim, L.-S. Kim, K.-I. Park, Y.-H. Jun, and S.-I. Cho, “A DLL With Jitter Reduction Techniques and Quadrature Phase Generation for DRAM Interfaces,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1522–1530, May 2009.
[13] K. Kim, S. Son, S. Ryu, H. Yeo, Y. Choi, and J. Kim, “A 1.3-mW, 1.6-GHz digital delay-locked loop with two-cycle locking time and dither-free tracking,” Proc. Symp. on VLSI Circuits, Kyoto, Japan, June 2013, pp. C158–C159.
[14] J.-S. Wang and C.-Y. Cheng, “An All-Digital Delay-Locked Loop Using an In-Time Phase Maintenance Scheme for Low-Jitter Gigahertz Operations,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 2, pp. 395–404, Feb. 2015.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2017-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明