博碩士論文 104521068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.135.196.234
姓名 王昱文(Yu-Wen Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具有兆赫波頻寬、高輸出功率,使用GaAs0.5Sb0.5 / In0.53Ga0.47As II-型混合吸收層的超快速單載子傳輸光電二極體
(Ultra-Fast Uni-Traveling Carrier Photodiode with GaAs0.5Sb0.5/In0.53Ga0.47As Type-II Hybrid Absorber for High-Power Operation at THz Frequency)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 我們展示了一種新型具有高功率性能在THz regime的超快速光偵測器(PD)。藉由基於在InP的單載子傳輸光偵測器(UTC-PD)結構中使用type-II GaAs0.5Sb0.5(p)/ In0.53Ga0.47As(i)混合吸收層,其響應性可以被提升由於窄帶隙和光吸收過程的增強在type-II界面的GaAs0.5Sb0.5和In0.53Ga0.47As吸收層之間。此外,電流阻塞效應通常是UTC-PD輸出功率的主要限制因素之一,但在這裡可以被忽略,由於從GaAs0.5Sb0.5層到InP based collector被注入光電子的過剩能量。覆晶式鍵合封裝在3 m直徑的主動區元件,顯示適當響應度(0.11A / W)和記錄寬的3dB optical-to-electrical(OE)帶寬為0.33THz,以上所量測的波長在長波長( 1.3-1.55 m)PDs。在具有正弦的光信號和PD激發的〜63%調製深度下,在0.32THz的工作頻率下,13mA的飽和電流和連續波(CW)輸出功率高達-3dBm。
摘要(英) We demonstrate a novel type of ultra-fast photodiode (PD) with high-power performance at THz regime. By using type-II GaAs0.5Sb0.5 (p)/In0.53Ga0.47As (i) hybrid absorber in a InP based uni-traveling carrier photodiode (UTC-PD) structure, its responsivity can be improved due to the narrowing of bandgap and an enhancement of photo-absorption process at the type-II interface between GaAs0.5Sb0.5 and In0.53Ga0.47As absorption layers. Furthermore, the current blocking effect, which is usually one of the major limiting factors in output power from UTC-PDs, can be minimized due to the high-excess energy of photo-generated electron injected from GaAs0.5Sb0.5 layer to InP based collector. The flip-chip bonding packaged device with a 3 um active diameter shows a moderate responsivity (0.11 A/W) and a record wide 3-dB optical-to-electrical (O-E) bandwidth as 0.33 THz among all the reported long wavelengths (1.3-1.55 um) PDs. Under the optical signal with a sinusoidal envelope and a ~63% modulation depth for PD excitation, a 13 mA saturation current and a continuous wave (CW) output power as high as -3 dBm at an operating frequency of 0.32 THz is successfully demonstrated.
關鍵字(中) ★ 光電二極體
★ 混合吸收層
★ 兆赫波頻寬
★ 高輸出功率
關鍵字(英) ★ GaAs0.5Sb0.5
★ In0.53Ga0.47As
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 ix
表目錄 xv
第一章 序論 1
1-1光纖通訊之發展趨勢 1
1-2光偵測器之發展與應用 3
1-3兆赫波光二極體增加響應之種類 14
1-4覆晶結合技術 19
1-5元件的應用 22
1-6論文動機與架構 26
第二章 單載子光偵測器設計 27
2-1 傳統P-I-N光偵測器工作原理 27
2-2 單載子傳輸光偵測器工作原理 29
2-3 單載子傳輸光偵測器之結構設計 33
2-4 Type-II Hybrid absorption單載子傳輸光偵測器之結構設計 35

第三章 超高速(330GHz) Type-II Hybrid Absorber單載子光二極體(Type-II Hybrid Absorber UTC-PD)製程步驟與底座製程步驟 39
3-1超高速(330GHz) Type-II Hybrid Absorber單載子光二極體(Type-II Hybrid Absorber UTC-PD)製程 39
3-2 CPW電路製程步驟 62
3-3 元件與傳輸線基板結合(Flip-chip Bond) 69
第四章 Type-II Hybrid Absorber單載子光偵測器之量測與結果討論 71
4-1 Heterodyne-Beating量測系統之架設 72
4-2 頻寬量測結果 73
4-3 Smith chart量測結果 76
4-4 RC限制頻率響應量測結果 78
4-5提取的RC bandwidth量測結果 79
4-6高功率產生量測結果 80
4-7 Transfer curve量測結果 85
第五章 結論與未來研究方向 87
參考文獻 88
參考文獻

[1] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito,H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1937-1944, May. 2006.
[2] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans.Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul. 1999.
[3] D. T. Leisawitz, W. C. Danchi, M. J. DiPirro, L. D. Feinberg, D. Y.Gezari, M. Hagopian, J. C. Mather, S. H. Moseley, R. F. Silverberg,W. D. Langer, M. Shao, M. R. Swain, H. W. Yorke, J. G. Staguhn,and X. Zhang, “Scientific motivation and technology requirements for the spirit and specs far-infrared/submillimeter space interferometers,”in Proc. SPIE, Munich, Germany, Mar. 2000, vol. 4013, pp. 36–46.
[4] G. L. Pilbratt, “The Herschel mission, scientific objectives, and this meeting,” in Proc. Eur. Space Agency Symp., Dec. 2000, vol. SP-460,pp. 13–20.
[5] R. L. Brown, “Technical specification of the millimeter array,” Proc.SPIE-Int. Soc. Opt. Eng., no. 3357, pp. 231–441, 1998.
[6] E. F. Erickson and J. A. Davidson, M. R. Haas, J. A. Davidson, and E. F.Erickson, Eds., “SOFIA: The future of airborne astronomy,” in Proc.Airborne Astronomy Symp. on the Galactic Ecosystem: From Gas toStars to Dust, San Francisco, CA, Apr. 1995.
[7] S. Gulkis, M. Allen, C. Backus, G. Beaudin, N. Biver, D. Bockelée-Morvan, J. Crovisier, D. Despois, P. Encrenaz, M. Frerking, M. Hofstadter,P. Hartogh, W. Ip, M. Janssen, L. Kamp, T. Koch, E. Lellouch,I. Mann, D. Muhleman, H. Rauer, P. Schloerb, and T. Spilker, “Remotesensing of a comet at millimeter and submillimeter wavelengthsfrom an orbiting spacecraft,” Planet. Space Sci., vol. 55, no. 9, pp.1050–1057, Jun. 2007.
[8] S. Gulkis, S. Keihm, L. Kamp, C. Backus, M. Janssen, S. Lee, B.Davidsson, G. Beaudin, N. Biver, D. Bockelée-Morvan, J. Crovisier,P. Encrenaz, T. Encrenaz, P. Hartogh, M. Hofstadter, W. Ip,E. Lellouch,I. Mann, P. Schloerb, T. Spilker, and M. Frerking, “Millimeterand submillimeter measurements of asteroid (2867) steins during the rosetta flyby,” Planet. Space Sci., vol. 58, no. 9, pp. 1077–1087, Jul.2010.
[9] J.-W. Shi, H.-C. Hsu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, Ja-Yu Lu, Chi-Kuang Sun, and Ci-Liang Pan, “Separated-Transport-Recombination p-i-n Photodiode for High-speed and High-power Performance” IEEE Photon. Technol. Lett, vol. 17, pp. 1722-1724, Aug. 2005.
[10] T. H. Stievater and K. J. Williams, “Thermally Induced Nonlinearities in High-Speed p-i-n Photodetectors,” IEEE Photon. Technol. Lett, vol. 16, pp. 239-241, Jan. 2004.
[11] N. Li, H. Chen, N. Duan, M. Liu, S. Demiguel, R. Sidhu, A. L. Holmes, Jr., and J.C. Campbell, “High Power Photodiode Wafer Bonded to Si Using Au With Improved Responsivity and Output Power” IEEE Photon. Technol. Lett, vol. 18,pp. 2526-2528, Dec. 2006.
[12] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi,“High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,”IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 709-727, Jul./Aug.2004.
[13] Ning Duan, Xin Wang, Ning Li, Han-Din Liu, and Joe C. Campbell
“ThermalAnalysis of High-Power InGaAs–InP Photodiodes,” IEEE Journal Of Quantum Electronics, vol. 42, no. 12, pp. 1255-1258, Dec. 2006.
[14] Jo Das, Herman Oprins, Hangfeng Ji, Andrei Sarua, Wouter Ruythooren, Joff Derluyn, Martin Kuball, Marianne Germain, and Gustaaf Borghs “Improved Thermal Performance of AlGaN/GaN HEMTs by an Optimized Flip-Chip Design,” IEEE Transactions On Electron Device, vol. 53, no. 11, pp. 2696-2700,Nov. 2006.

[15] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec. 2005.
[16] Jhih-Min Wun, Hao-Yun Liu, Yu-Lun Zeng , Shang-Da Yang, Ci-Ling Pan, Chen-Bin Huang, and Jin-Wei Shi, “Photonic High-Power CW THz-Wave Generation by Using Flip-Chip Packaged Uni-Traveling Carrier Photodiode and Femtosecond Optical Pulse Generator,” IEEE/OSA Journal of Lightwave Technology, vol. 34, pp. 1387-1397, Feb., 2016.
[17]T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-Carrier Photodiodes for Terahertz Applications,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 20, pp. 3804210, Nov.,/Dec., 2014.
[18] J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and Analysis of Ultra-High Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes under a 50 Load for High-Power Performance,” IEEE Photon. Technol. Lett., vol. 24, pp. 533-535, April, 2012.
[19]E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds “Traveling-wave Uni-Traveling Carrier Photodiodes for continuous wave THz generation,” Optics Express, vol. 18, No. 11, pp. 11105-11110, May, 2010.
[20] Y. Muramoto, H. Fukano, and T. Furuta, “A Polarization-Independent Refracting-Facet Uni-Traveling-Carrier Photodiode With High Efficiency and Large Bandwidth,” IEEE/OSA Journal of Lightwave Technology, vol. 24, pp. 3830-3834, Oct., 2006.
[21] X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-Power and High-Speed Heterogeneously Integrated Waveguide-Coupled Photodiodes on Silicon-on-Insulator,” IEEE/OSA Journal of Lightwave Technology, vol. 34, pp. 73-78, Jan., 2016.
[22] Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron., vol. 46, no. 5, pp. 626-632, May, 2010.
[23] R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, D.-F. Hsu, and M. A. Itzler, “2.4 m cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett., vol. 42, no. 3, pp. 181-182, 2006.
[24] Jhih-Min Wun, Rui-Lin Chao, Yu-Wen Wang, Yi-Han Chen, and Jin-Wei Shi, “Type-II GaAs0.5Sb0.5/InP Uni-Traveling Carrier Photodiodes with Sub-THz Bandwidth and High-Power Performance under Zero-Bias Operation,” IEEE/OSA Journal of Lightwave Technology, vol. 35, pp. 711-716, Feb., 2017.
[25] H. Ito, T. Furuta, S. Kodama, N. Watanabe, and T. Ishibashi “Inp/InGaAs uni-travelling-carrier photodiode with 310GHz bandwidth,” Electron. Lett., vol. 36, pp. 1809-1810, Oct., 2000.
[26] A Polarization-Independent Refracting-Facet Uni-Traveling-Carrier Photodiode With High Efficiency and Large Bandwidth Yoshifumi Muramoto, Hideki Fukano, and Tomofumi Furuta [31] B. Ke, T. Chau, Y. Qian, M. Wu, and T. Itoh, “Tapered slot antenna
with velocity-matched distributed photodetector,” in IEEE MTT-S Int. Microwave Symp. Dig., 1999, pp. 1241–1244.
[27] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InPInGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[28]K. S. Giboney, J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[29]J. Campbell, S. Demiguel, and N. Li, “High-speed photodetectors,” 31st European Conference on Optical Communication (Glasgow, Scotland, 2005), pp. 493–496 vol.3.
[30]Traveling-wave Uni-Traveling Carrier Photodiodes for continuous wave THz generation Efthymios Rouvalis1, Cyril C. Renaud1, David G. Moodie2, Michael J. Robertson2 and Alwyn J. Seeds1* 1UCL Electronic and Electrical Engineering, Torrington Place, London WC1E 7JE, UK 2Centre for Integrated Photonics, Adastral Park, Ipswich IP5 3RE, UK *a.seeds@ee.ucl.ac.uk
[31] JEFFREY GOTRO,in http://polymerinnovationblog.com/ on NOVEMBER 4, 2013
[32] 台灣安立知(ANRITSU COMPANY, INC.) 產品介紹“VectorStar寬頻向量網路分析儀,”in http://www.anritsu.com/ 2014/5推出
[33] G. A. Chakam and W. Freude, “Coplanar phased array antenna with
optical feeder and photonic bandgap structure,” in Microwave Photon. Tech. Dig., 1999, pp. 1–4.
[34] N. Sahri and T. Nagatsuma, “Packaged photonic probes for an on-wafer broad-band millimeter-wave network analyzer,” Photon. Technol. Lett., vol. 12, pp. 1225–1227, Sept. 2000.
[35] J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, High-Speed,High-Responsivity, and High-Power Performance of Near- Ballistic Uni-Traveling-Carrier Photodiode at 1.55μm Wavelength,” IEEE Photon. Technol. Lett., vol. 17, pp. 1929-1931, Sep. 2005.
[36] Y.-S. Wu, and J.-W. Shi, “Dynamic Analysis of High-Power and High-Speed Near-Ballistic Unitraveling Carrier Photodiodes at W-Band," IEEE Photon.Technol. Lett., vol. 20, pp. 1160-1162, July. 2008.
[37] S. M. Sze, “Physics of Semiconductor devices,” John Wiley & Sons, 2nd Edition.
[38] Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, pp. 709–727, Jul./Aug. 2004.
[39] N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaA Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz,” IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, Mar. 1998.
[40] J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave Photonic Wireless Links for Very-High Data Rate Communication,” NPG Asia Materials, vol. 3, No. 2, pp. 41-48, April, 2011.
[41] Andreas Beling, Heinz-Gunter Bach, Gebre Giorgis Mekonnen, Reinhard Kunkel, and Derlef Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Quantum Electron., vol. 13, no. 1, pp. 15-21, Jan./Feb. 2007.
[42] H. Ito, T. Furuta, S. Kodama, N. Watanabe, and T. Ishibashi “Inp/InGaAs uni-travelling-carrier photodiode with 310GHz bandwidth,” Electron. Lett., vol. 36, pp. 1809-1810, Oct., 2000.

[43] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec., 2005.
[44] J.-W. Shi, F .-M. Kuo, C.-J. Wu, C. L. Chang, C. Y. Liu, C.-Y. Chen, and J.-I. Chyi, “Extremely High Saturation Current-Bandwidth Product Performance of a Near-Ballistic Uni-Traveling-Carrier Photodiode with a Flip-Chip Bonding Structure,” IEEE J. of Quantum Electronics, vol. 46, pp. 80-86, Jan., 2010.
[45] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec., 2005.
[46] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec. 2005.
[47] Jhih-Min Wun, Hao-Yun Liu, Yu-Lun Zeng , Shang-Da Yang, Ci-Ling Pan, Chen-Bin Huang, and Jin-Wei Shi, “Photonic High-Power CW THz-Wave Generation by Using Flip-Chip Packaged Uni-Traveling Carrier Photodiode and Femtosecond Optical Pulse Generator,” IEEE/OSA Journal of Lightwave Technology, vol. 34, pp. 1387-1397, Feb., 2016.
[48] Jin-Wei Shi, Kai-Lun Chi, Chi-Yu Li, and Jhih-Min Wun “Dynamic Analysis of High-Efficiency InP Based Photodiode for 40 Gbit/sec Optical Interconnect across a Wide Optical Window (0.85 to 1.55 m),” IEEE/OSA Journal of Lightwave Technology, vol. 33, no. 4, pp. 921-927, Feb., 2015.
[49] J.-W. Shi and C.-W. Liu, “Design and Analysis of Separate-Absorption-Transport-Charge-Multiplication Traveling-Wave Avalanche Photodetectors” IEEE/OSA Journal of Lightwave Technology, vol. 22, pp.1583-1590, June, 2004.
[50] T. Ishibashi, “Nonequilibrium Electron Transport in HBTs,” IEEE Trans. on Electron Devices, vol. 48, pp. 2595-2604, Nov., 2001.
[51] S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Hennberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C.Koss, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate ,” Nature Photonics, vol. 7, pp. 977-981, Dec., 2013.
[52]H.-J. Song and T. Nagatsuma, “Present and Future Terahertz Communications,” IEEE Trans. Terahertz Science Tech., vol. 1, pp. 256-263, Sep., 2011.
[53] F.-M. Kuo, C.-B. Huang, J.-W. Shi, Nan-Wei Chen, H.-P. Chuang, John E. Bowers, and Ci-Ling Pan, “Remotely Up-converted 20 Gbit/s Error-Free Wireless On-off-keying Data Transmission at W-band using an Ultra-Wideband Photonic Transmitter-Mixer,” IEEE Photonics Journal, vol. 3, no. 2, pp. 209-219, April, 2011.
[54]A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s Millimeter-Wave Signal Generation Using Photodiode Bias Modulation,” IEEE/OSA Journal of Lightwave Technology, vol. 24, pp. 1725–1731, April, 2006.
[55] Nan-Wei Chen, Jin-Wei Shi, Fong-Ming Kuo, Jeffery Hesler, Thomas W. Crowe, and John E. Bowers, “25 Gbits/sec Error-Free Wireless Link between Ultra-Fast W-Band Photonic Transmitter-Mixer and Envelop Detector,” Optics Express, vol. 20, No. 19, pp. 21223-21234, Sep., 2012.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2017-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明