博碩士論文 104521073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:3.144.96.159
姓名 蔡信錩(Hsin-Chang Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具p型氮化鎵表面層之氮化鋁鎵/氮化鎵高電子遷移率電晶體
(AlGaN/GaN High-Electron Mobility Transistors with a p-type GaN Cap Layer)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要針對在矽(111)基板上進行氮化鋁鎵/氮化鎵高電子遷移率電晶體製作與研究,希望藉由改變氮化鎵表面層的厚度及鎂離子摻雜濃度,研究不同氮化鎵表面層在元件的直流電特性和動態電流崩塌效應。
為了觀察三種不同p型氮化鎵磊晶表面層的氮化鋁鎵/氮化鎵高電子遷移率電晶體的電特性差異,實驗採用相同鎂離子活化條件和相同的元件製程步驟,鎂離子活化條件為氮氣環境下700°C 15分鐘。元件閘極漏電流,在增加氮化鎵表面層厚度後可下降約一個數量級,不過受到氮化鎵表面層極化的影響,元件會有相對低的汲極電流。藉由蕭特基閘極的分析,在增加氮化鎵表面層厚度後,元件觀察到相對高的蕭特基能障。
在元件脈衝電流測量下,比較不同的靜止點偏壓條件(quiescent point),觀察元件開啟後的電流狀態,發現較厚的氮化鎵表面層的元件在動態電阻/穩態電阻比值有較優異的表現。
摘要(英)
In this paper, we focus on the fabrication and research of p-GaN cap in AlGaN/GaN high electron mobility transistors (HEMTs) on silicon (111) substrates. By changing the thickness and Magnesium ion doping concentration of GaN cap layer, DC characteristics and dynamic current collapse effect of devices are investigated.
In order to observe the electrical properties of AlGaN/GaN HEMTs in three different p-type GaN epitaxial cap layers, the same Mg ion activation conditions and the same process were used. The activation conditions are annealing in a N2 ambient at 700 ° C for 15 minutes before device fabrication. The gate leakage current can be reduced by about one order after increasing the thickness of the GaN cap layer, but device shows a relatively low drain current. With the analysis of the Schottky gate, the device shows a relatively high Schottky barrier height after increasing the thickness of the GaN cap layer.
Devices were measured with the pulse IV measurement under different quiescent bias points, the on-state current was compared. Device with the thicker GaN cap layer had better Ron,stresss/Ron,no stress ratio.
關鍵字(中) ★ 氮化鎵
★ 氮化鋁鎵
★ 高電子遷移率電晶體
★ 表面層
★ 蕭特基
關鍵字(英) ★ GaN
★ AlGaN
★ HEMT
★ cap layer
★ Schottky
論文目次
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1前言 1
1.2氮化鋁鎵/氮化鎵場效電晶體發展與相關表面製程相關研究 3
1.3本論文研究動機與目的 4
1.4論文架構 6
第二章 氮化鋁鎵/氮化鎵高電子遷移率電晶體於矽基板上之結構設計及材料特性分析 7
2.1前言 7
2.2氮化鋁鎵/氮化鎵於矽基板之磊晶結構 7
2.3氮化鋁鎵/氮化鎵結構之霍爾量測與分析 13
2.4氮化鋁鎵/氮化鎵高電子遷移率電晶體製作流程 14
2.5氮化鋁鎵/氮化鎵結構之基本電性分析 18
2.6結論 26
第三章 氮化鋁鎵/氮化鎵高電子遷移率電晶體直流特性分析 27
3.1前言 27
3.2氮化鋁鎵/氮化鎵高電子遷移率電晶體直流電性分析 27
3.2.1氮化鋁鎵/氮化鎵高電子遷移率電晶體直流電性 27
3.2.2氮化鋁鎵/氮化鎵高電子遷移率電晶體變溫直流特性 36
3.2.3氮化鋁鎵/氮化鎵高電子遷移率電晶體元件崩潰 44
3.3結論 47
第四章 氮化鋁鎵/氮化鎵高電子遷移率電晶體動態特性分析與比較 49
4.1 前言 49
4.2 氮化鋁鎵/氮化鎵高電子遷移率電晶體偏壓遲滯特性 49
4.3氮化鋁鎵/氮化鎵高電子遷移率電晶體動態特性分析 53
4.3.1氮化鋁鎵/氮化鎵高電子遷移率電晶體脈衝電流-電壓特性 54
4.3.2氮化鋁鎵/氮化鎵高電子遷移率電晶體動態電阻特性 65
4.3.3氮化鋁鎵/氮化鎵高電子遷移率電晶體之矽基板偏壓下動態特性 70
4.4結論 75
第五章 結論與未來展望 77
參考文獻 78
附錄I 83
參考文獻

[1] Steve Taranovich, “Si vs. GaN vs. SiC: Which process and supplier are best for my power design ,” EDN Network, March 2013.
[2] “Next Generation Power Semiconductors: Sanken′s Commitment to GaN/SiC Development,” Sanken electric Co. LTD
[3] Ashok Bindra, “IEDM Divulges Advances in Wide Bandgap Devices,” Semiconductors and Components on Eectronics360, February 2016.
[4] Wataru Saito, Masahiko Kuraguchi, Yoshiharu Takada, Kunio Tsuda, Ichiro Omura, and Tsuneo Ogura, “Influence of Surface Defect Charge at AlGaN–GaN-HEMT Upon Schottky Gate Leakage Current and Breakdown Voltage,” IEEE Transactions Electron Devices, Vol. 52, No. 2, pp. 159-164, Feb. 2005.
[5] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, “Recessed-Gate Structure Approach Toward Normally Off High-Voltage AlGaN/GaN HEMT for Power Electronics Applications,” IEEE Transactions Electron Devices, Vol. 53, No. 2, pp. 356-362, Feb. 2006.
[6] Kevin J. Chen, L. Yuan, M. J. Wang, H. Chen, S. Huang, Q. Zhou, C. Zhou, B. K. Li, and J. N. Wang, “Physics of fluorine plasma ion implantation for GaN normally off HEMT technology,” IEEE IEDM, pp. 19.4.1-19.4.4, Dec. 2011.
[7] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, D. Ueda, “Gate Injection Transistor (GIT)-A Normally-Off AlGaN GaN Power Transistor Using Conductivity Modulation,” IEEE Transactions Electron Devices, Vol. 54, No. 12, pp. 3393-3399, Dec. 2007.
[8] Liang-Yu Su, Finella Lee, and Jian Jang Huang, “Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer,” IEEE Transactions Electron Devices, Vol. 61, No. 2, pp. 460-465, Feb. 2014.
[9] P. Kordos, J. Bernat, and M. Marso, “Impact of layer structure on performance of unpassivated AlGaN/GaN HEMT,” Electronics Letters, Vol. 36, No. 3-6, pp. 438–441, March 2005.
[10] H. Huang, Y. C. Liang, G. S. Samudra, T. Chang, and C. Huang, “Effects of Gate Field Plates on the Surface State Related Current Collapse in AlGaN/GaN HEMTs,” IEEE Teansactions on Power Electronics, Vol. 29, No. 5, pp. 2164-2173, May 2014.
[11] M. T. Hasan, T. Asano, H. Tokuda, and M. Kuzuhara, “Current Collapse Suppression by Gate Field-Plate in AlGaN/GaN HEMTs,” IEEE Electron Device Letters, Vol. 34, No. 11, pp. 1379-1381, September 2013.
[12] W. Saito, Y. Kakiuchi, T. Nitta, Y. Saito, T. Noda, H. Fujimoto, A. Yoshioka, T. Ohno, and M. Yamaguchi, “Field-Plate Structure Dependence of Current Collapse Phenomena in High-Voltage GaN-HEMTs,” IEEE Electron Device Letters, Vol. 31, No. 7, pp. 659-661, Jul. 2010.
[13] G. Vanko, T. Lalinsky, S. Hascık, I. Ryger, Z. Mozolova, J. Skriniarova, M. Tomaska, I. Kostic, and A. Vincze, “Impact of SF6 plasma treatment on performance of AlGaN/GaN HEMT,” Elsevier, Vol. 84, No. 1, pp. 235-237, August 2009.
[14] M. F. Romero, A. Jimenez, F. G. Flores, S. Martín-Horcajo, F. Calle, and E.s Munoz, “Impact of N2 Plasma Power Discharge on AlGaN/GaN HEMT Performance,” IEEE Transactions on Electron Devices, Vol. 59, No. 2, pp. 374-379, February 2012.
[15] D. J. Meyer, J. R. Flemish, and J. M. Redwing, “Pre-passivation Plasma Surface Treatment Effects on Critical Device Electrical Parameters of AlGaN/GaN HEMTs,” Cs Mantech Conference, April 2008.
[16] D. S. Lee, J. W. Chung, H. Wang, X. Gao, S. Guo, P. Fay, and T. Palacios, “245-GHz InAlN/GaN HEMTs With Oxygen Plasma Treatment,” IEEE Electron Device Letters, Vol. 32, No. 6, pp. 755-757, June 2011.
[17] T. Katsuno, M. Kanechika, K. Itoh, K. Nishikawa, T. Uesugi, and T. Kachi, “Improvement of Current Collapse by Surface Treatment and Passivation Layer in p-GaN Gate GaN High-Electron-Mobility Transistors,” Japanese Journal of Applied Physics, Vol. 52, No. 4S, pp. 04CF08.1-04CF08.5, March 2013.
[18] S. Yoshida, Y. Sakaida, J. T. Asubar, H. Tokuda, and M. Kuzuhara, “Current Collapse in AlGaN/GaN HEMTs with a GaN Cap Layer,” IEEE International Meeting for Future of Electron Devices Kansai (IMFEDK), June 2015.
[19] T. Chang, T. Hsiao, C. Huang, W. Kuo, S. Lin, G. S. Samudra, and Y. C. Liang, “Phenomenon of Drain Current Instability on p-GaN Gate AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, Vol 62, No. 2, pp.339-345, September 2014.
[20] D. Shibata, K. Kaibara, T. Murata, Y. Yamada, T. Morita, Y. Anda, M. Ishida, H. Ishida, T. Ueda, T. Tanaka, D. Ueda, “GaN-based Multi-Junction Diode with Low Reverse Leakage Current Using P-type Barrier Controlling Layer,” IEEE IEDM, pp. 26.2.1 - 26.2.4, Dec. 2011.
[21] P. Moens, C. Liu, A. Banerjee, P. Vanmeerbeek, P. Coppens, H. Ziad, A. Constant, Z. Li, H. De Vleeschouwer, J. Roig-Guitart, P. Gassot, F. Bauwens, E. De Backer, B. Padmanabhan, A. Salih, J. Parsey, and M. Tack, “An Industrial Process for 650V rated GaN-on-Si Power Devices using in-situ SiN as a Gate Dielectric,” IEEE 26th International Symposium on Power Semiconductor Devices & IC′s (ISPSD), June 2014.
[22] Liang-Yu Su, Finella Lee, and Jian Jang Huang, “Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer,” IEEE Transactions on Electron Devices, Vol. 61, No. 2, pp. 460-465, February 2014.
[23] R. Coffie, D. Buttari, S. Heikman, S. Keller, A. Chini, L. Shen, and U. K. Mishra, “p-Capped GaN–AlGaN–GaN High-Electron Mobility Transistors (HEMTs)”, IEEE Electron Device Letters, Vol. 23, No. 10, pp. 588-590, October 2002.
[24] S. Arulkumamaran, T. Egawa, and H. Ishikawa, “Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors,” Japanese Journal of Applied Physics, Vol. 44, No. 5A, pp. 2953-2960, May 2005.
[25] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L.F.Eastman,“Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, Vol. 85, No. 6, p. 3222-3233, March 1999.
[26] Sten Heikman, Stacia Keller, Yuan Wu, James S. Speck, Steven P. DenBaars, and Umesh K. Mishra, “Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures,” Journal of Applied Physics, Vol. 3, No. 12, pp.10114-10118, June 2003.
[27] Junji Kotani, Masafumi Tajima, Seiya Kasai, and Tamotsu Hashizume, “Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN/GaN heterostructures,” Applied Physics Letters, Vol. 91, No. 9, pp. 3501.1-3501.3, August 2007.
[28] Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, K. L. Teo, “Improved two-dimensional electron gas transport characteristics in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor with atomic layer-deposited Al2O3 as gate insulator,” Applied Physics Letters, Vol. 95, No. 22, pp. 3501.1-3501.3, November 2009.
[29] Y. Zhou, D. Wang, C. Ahyi, C. C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser, E. A. Preble, “Temperature-dependent electrical characteristics of bulk GaN Schottky rectifier,” Journal of Applied Physics, Vol. 101, No. 2, pp. 024506 - 024506-4, January 2007.
[30] Y. H. Choi, J. Lim, K. H. Cho, M.K. Han, “High Voltage AlGaN/GaN Schottky Barrier Diode Employing the Inductively Coupled Plasma-Chemical Vapor Deposition SiO2 Passivation, “ IEEE International Conference on Power Electronics, pp. 71 - 73, October 2007.
[31] Matthew A. Laurent, Geetak Gupta, Donald J. Suntrup III, Steven P. DenBaars, and Umesh K. Mishra, “Barrier height inhomogeneity and its impact on (Al,In,Ga)N Schottky diodes,” Journal of Applied Physics, Vol. 119, No. 6, pp. 064501-064501-7, February 2016.
[32] 佘孟儒, “矽基板偏壓對氮化鋁鎵/氮化鎵蕭特基二極體之電性影響,”碩士論文, 國立中央大學, 2011.
[33] F. Iucolano, F. Roccaforte, F. Giannazzo, V. Raineri, “Barrier inhomogeneity and electrical properties of Pt/GaN Schottky contacts,” Journal of Applied Physics, Vol. 102, No. 11, pp. 113701-113701-8, December 2007.
[34] Z. Tekeli, Ş. Altındal, M. Çakmak, S. Özçelik, D. Çalışkan, E. Özbay, “The behavior of the I-V-T characteristics of inhomogeneous Ni/Au -Al0.3Ga0.7N/AlN/GaN heterostructures at high temperatures,” Journal of Applied Physics, Vol. 102, No. 5, pp. 054510-054510-8, September 2007.
[35] Gaudenzio Meneghesso, Matteo Meneghini, Davide Bisi, Isabella Rossetto, Andrea Cester, Umesh K Mishra and Enrico Zanoni,“Trapping phenomena in AlGaN/GaN HEMTs: a study based on pulsed and transient measurements,” Semiconductor Science and Technology, Vol. 28, No. 7, pp. 1-8, February 2013.
[36] M. Meneghini, P. Vanmeerbeek, R. Silvestri, S. Dalcanale, A. Banerjee, D. Bisi, E. Zanoni, G. Meneghesso, and P. Moens, “Temperature-Dependent Dynamic RON in GaN-Based MIS-HEMTs: Role of Surface Traps and Buffer Leakage,” IEEE Transactions on Electron Devices, Vol. 62, No. 3, pp. 782-787, March 2015.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明