博碩士論文 104521111 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.221.154.151
姓名 邱德彥(Te-Yen Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 擁有高增益之高模態介電共振器晶片上天線之340-GHz兆赫茲影像器
(A 340-GHz CMOS THz Imager with High-Gain On-Chip Higher-Order Mode Dielectric Resonator Antenna)
相關論文
★ 以90-nm CMOS 製程實現之47-GHz 壓控振盪器設計★ 應用於衛星通訊之QFN封裝X-/Ku-Band 低雜訊放大器設計
★ 使用電流路徑操作技術之無巴倫差動輸出倍頻器★ 使用系統封裝技術實現高頻率射頻能量獵取電路
★ 以40-nm CMOS製程實現操作於100-GHz 之功率放大器設計★ 應用於感測器與太赫茲通訊之互補式金氧半高頻電路設計
★ 應用於毫米波影像與太赫茲通訊之互補式金氧半94-GHz及200-GHz接收機設計★ 應用於太赫茲成像系統340-GHz反射器天線系統和85-GHz二倍頻器
★ 使用40奈米互補式金氧半製程之85-GHz功率放大器設計★ 應用於太赫茲通訊之 40 奈米互補式金氧半二倍頻器設計
★ 應用於太赫茲影像雷達及無線通訊系統之40-nm CMOS壓控振盪器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文提出了一種低成本,高增益片上兆赫茲(THz)介電共振器天線(DRA),介電共振器天線由低損耗介電共振器(DR)製作的高阻抗矽材料,並利用0.18-μm CMOS實現晶片上貼片天線饋入訊號,產生所需的電磁模式。利用一片兩英吋的矽晶圓,通過切割所需的尺寸,介電共振器可以很容易的產生出來,厚度500 μm的介電共振器可以激發出高階模式的TEδ,1,7,這大幅增強了天線增益,如果選擇基本模式在兆赫茲頻率下介電共振器厚度約為100 μm,這不僅需要額外的晶圓變薄處理,且晶片在製作的過程中也容易斷裂。
晶片上貼片天線用於激發高階模式TEδ,1,7,此外,它的接地層也防止了電磁場洩漏到有損耗的CMOS矽基底,從而提高了天線的效率,頻率於341 GHz時,模擬天線增益為7.9 dBi,同時提供74%的輻射效率,頻寬為7.3%。
為了分辨介電共振器天線的性能,相同的COMS影像器分別搭配晶片上貼片天線與提出的介電共振器天線,通過比較這兩個影像器的測量響應度,可以獲得介電共振器天線與晶片上貼片天線的增益改善。為了穩健的評估,我提供了三個量測樣本,量測結果表明在327 GHz時,可以獲得6.7 dB的最大增益改善,所以介電共振器天線與COMS影像器的兆赫茲透射成像系統頻率為327 GHz,據了解,這是以兆赫茲頻率工作的第一個高階模式介電共振器天線。
摘要(英) A low-cost and high-gain on-chip THz dielectric resonator antenna (DRA) is proposed in this work. The DRA consists of a low-loss dielectric resonator (DR) made of high-resistivity silicon material and an on-chip feeding patch realized in a 0.18-μm CMOS technology for exciting the desired electromagnetic (EM) mode. The DR can be easily fabricated to the required dimension by wafer dicing of a 2-inch silicon wafer. With a 500-μm thick DR, a higher-order mode of TEδ,1,7 can be excited, which greatly enhances the antenna gain. Such higher-order mode operation also provides a reliable design. If a fundamental mode is selected, the DR thickness is around 100 μm at THz frequencies, which not only requires additional wafer thinning process, but the wafer is also easily broken during the fabrication process. The feeding patch is used to excite the TEδ,1,7 mode. Moreover, its ground plane also prevents the EM field from leaking into the lossy CMOS silicon substrate, which improves the antenna efficiency. The simulated antenna gain can be 7.9 dBi while providing radiation efficiency of 74% at 341 GHz with 7.3% bandwidth. To characterize the DRA performance, an identical CMOS imager is designed to be integrated with the proposed DRA and an on-chip patch antenna, respectively. By comparing the measured responsivity of these two imagers, the gain improvement of the DRA over the on-chip patch antenna can be obtained. Three samples are measured to evaluate the robustness of the proposed antenna over process variation. The measured results show that the maximum gain improvement of 6.7 dB can be acquired at 327 GHz. The proposed DRA with the integrated CMOS imager is also employed to successfully demonstrate a THz transmissive imaging system at 327 GHz. To the best of authors’ knowledge, this is first higher-order mode DRA working at THz frequencies.
關鍵字(中) ★ 兆赫茲
★ 太赫茲
★ 介電共振器天線
★ 高模態
★ 兆赫茲影像器
關鍵字(英) ★ THz
★ Dielectric resonator antenna
★ Higher-order mode
★ CMOS
★ THz imaging system
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 THz技術 1
1.2 THz成像原理 2
1.3 THZ影像器(THz Imager) 4
1.4 晶片上天線(On-Chip Antenna) 5
1.5 研究動機 9
1.6 論文架構 9
第二章 THz 影像器設計 10
2.1 系統架構 10
2.2 單像素THz影像器架構 11
2.3 0.18-μm CMOS技術 13
2.4 介電共振器天線(DRA)設計 14
2.5 THz影像器電路設計 27
2.5.1 功率檢測器(Power Detector) 27
2.5.2 電壓位準移位器(Level Shifter) 32
2.5.3 運算放大器(OP Amp) 34
2.5.4 輸出緩衝器(Output Buffer) 38
2.6 結論 39
第三章 驗證方法與結果 43
3.1 量測校正 43
3.2 量測方法 49
3.4 量測結果 53
3.5 結論 56
第四章 THz 穿透式影像系統 60
4.1 影像系統架設 60
4.2 成像結果 63
4.3 結論 64
第五章 總結與未來展望 65
5.1 總結 65
5.2 未來展望 66
參考文獻 67
個人簡歷 70
發表文章 71
期刊論文 71
會議論文 71
榮譽和獎勵 71
參考文獻 [1] P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 3, pp. 910-928, Mar. 2002.
[2] P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 10, pp. 2438-2447, Oct. 2004.
[3] M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, vol. 1, pp. 97-105, Feb. 2007.
[4] H.-J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. THz Sci. Technol., vol. 1, no. 1, pp. 256-263, Sep. 2011.
[5] TeraView, TeraPulse 4000 [Online]. Available: http://www.teraview.com/products/TeraPulse%204000/index.html
[6] MenloSystems, TERA K15 [Online]. Available: http://www.menlosystems.com/products/thz-time-domain-solutions/all-fiber-coupled-terahertz-spectrometer/
[7] ADVANTEST, TAS7500TS [Online]. Available: https://www.advantest.com/products/terahertz-spectroscopic-imaging-systems/terahertz-wave-spectroscopy-and-imaging-analysis-platform
[8] TOPTICA Photonics, TeraScan 780 [Online]. Available: http://www.toptica.com/products/terahertz_generation/lasers_and_photomixers_for_cw_terahertz_generation/terascan_frequency_domain_spectroscopy_systems.html
[9] C.-H. Li, C.-L. Ko, C.-N. Kuo, M.-C. Kuo, and D.-C. Chang, “A 340-GHz triple-push oscillator with differential output in 40-nm CMOS,” IEEE Microw. Compon. Lett., vol. 24, no. 12, pp. 863-865, Dec. 2014.
[10] R. Han et al., “A 280-GHz Schottky diode detector in 130-nm digital CMOS,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 564-580, Nov. 2011.
[11] E. Öjefors, U. R. Pfeiffer, A. Lisauskas, and H. G. Roskos, “A 0.65 THz focal-plane array in a quarter-micron CMOS process technology,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 1968-1976, Jul. 2009.
[12] S. Jameson, E. Halpern, and E. Socher, “A 300 GHz wirelessly locked 2x3 array radiating 5.4dBm with 5.1% DC-to-RF efficiency in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2016, pp. 348-349.
[13] R. Han and E. Afshari, “A CMOS high-power broadband 260-GHz radiator array for spectroscopy,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3090-3104, Dec. 2013.
[14] U. R. Pfeiffer et al., “A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications,” IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2938-2950, Dec. 2014.
[15] N. G. Alexopoulos, P. B. Katehi, and D. B. Rutledge, “Substrate optimization for integrated circuit antennas,” IEEE Trans. Microw. Theory Techn., vol. 83, no. 7, pp. 550-557, Jul. 1983.
[16] G. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE, vol. 80, no. 11, pp. 1748-1770, Nov. 1992.
[17] A. Babakhani et al., “A 77-GHz phased-array transceiver with on-chip antennas in silicon: Receiver and antennas,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2795-2806, Dec. 2006.
[18] K. Sengupta and A. Hajimiri, “A 0.28 THz power-generation and beam-steering array in CMOS based on distributed active radiators,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3013-3031, Dec. 2012.
[19] X.-Y. Bao, Y.-X. Guo, and Y.-Z. Xiong, “60-GHz AMC-based circularly polarized on-chip antenna using standard 0.18-μm CMOS technology,” IEEE Trans. Antennas Propag., vol. 60, no. 5, pp. 2234-2241, May 2012.
[20] H.-C. Kuo, H.-L. Yue, Y.-W. Ou, C.-C. Lin, and H.-R. Chuang, “A 60-GHz CMOS sub-harmonic RF receiver with integrated on-chip artificial-magnetic-conductor Yagi antenna and balun bandpass filter for very-short-range gigabit communications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1681-1691, Apr. 2013.
[21] E. Ojefors, H. Kratz, K. Grenier, R. Plana, and A. Rydberg, “Micromachined loop antennas on low resistivity silicon substrates,” IEEE Trans. Antennas Propag., vol. 54, no. 12, pp. 3593-3601, Dec. 2006.
[22] J. M. Edwards and G. M. Rebeiz, “High-efficiency elliptical slot antennas with quartz superstrates for silicon RFICs,” IEEE Trans. Antennas Propag., vol. 60, no. 11, pp. 5010-5020, Nov. 2012.
[23] F. Golcuk, O. D. Gurbuz, and G. M. Rebeiz, “A 0.39-0.44 THz 2x4 amplifier-quadrupler array with peak EIRP of 3-4 dBm,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4483-4491, Dec. 2013.
[24] J. Grzyb, Y. Zhao, and U. R. Pfeiffer, “A 288-GHz lens-integrated balanced triple-push source in a 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1751-1761, Jul. 2013.
[25] C.-H. Li et al., “A 37.5-mW 8-dBm-EIRP 15.5°-HPBW 338-GHz terahertz transmitter using SoP heterogeneous system integration,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 470-480, Feb. 2015.
[26] R. Han et al., ”A 280-GHz schottky diode detector in 130-nm digital CMOS,” IEEE J. Solid-State Circuits, vol. 46, no.11 pp. 2602-2612, Nov. 2011.
[27] M. O. Sallam et al., “Micromachined on-chip dielectric resonator antenna operating at 60 GHz,” IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3410-3416, Aug. 2015.
[28] D. Hou et al., “D-band on-chip higher-order-mode dielectric-resonator antennas fed by half-mode cavity in CMOS technology,” IEEE Antennas Propag. Mag., vol. 56, no. 3, pp. 80-89, Jun. 2014.
[29] D. Hou et al., “130-GHz on-chip meander slot antennas with stacked dielectric resonators in standard CMOS technology,” IEEE Trans. Antennas Propag., vol. 60, no. 9, pp. 4102-4109, Sep. 2012.
[30] K. W. Leung, E. H. Lim, and X. S. Fang, “Dielectric resonator antennas: From the basic to the aesthetic,” Proc. IEEE, vol. 100, no. 7, pp. 2181-2193, Jul. 2012.
[31] Y.-M. Pan, K. W. Leung, and K.-M. Luk, “Design of the millimeter-wave rectangular dielectric resonator antenna using a higher-order mode,” IEEE Trans. Antennas Propag., vol. 59, no. 8, pp. 2780-2788, Aug. 2011.
[32] A. Petosa and S. Thirakoune, “Rectangular dielectric resonator antennas with enhanced gain,” IEEE Trans. Antennas Propag., vol. 59 no. 4, pp. 1385-1389, Apr. 2011.
[33] X.-D. Deng, Y. Li, C. Liu, W. Wu, and Y.-Z. Xiong, “340GHz on-chip 3-D antenna with 10 dBi gain and 80% radiation efficiency,” IEEE Trans. THz Sci. Technol., vol. 5, no. 4, pp. 619-627, Jul. 2015.
[34] M.-R. Nezhad-Ahmadi, M. Fakharzadeh, B. Biglarbegian, and S. Safavi-Naeini, “High-efficiency on-chip dielectric resonator antenna for mm-wave transceivers,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3388-3392, Oct. 2010.
[35] A. Petosa, Dielectric Resonator Antenna Handbook. Norwood, MA, USA: Artech House, 2006.
[36] T.-C. Yan et al., “CMOS THz transmissive imaging system,” IEEE Asian Solid-State Circuits Conf., Nov. 2014, pp. 169-172.
[37] X.-D. Deng, Y. Li, W. Wu, and Y.-Z. Xiong, “340-GHz SIW cavity-backed magnetic rectangular slot loop antennas and arrays in silicon technology,” IEEE Trans. Antennas Propag., vol. 63, no. 12, pp. 5272-5279, Dec. 2015.
[38] Lei Zhou, et al., “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits, vol. 46, no. 2, pp. 378-391, Feb. 2011.
[39] Mehmet Uzunkol, et al., “A 0.32 THz SiGe 4x4 imaging array using high-efficiency on-chip antennas,” IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2056-2066, Sep. 2013.
[40] Richard Al Hadi, et al., “A 1 k-Pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2999-3012, Dec. 2012.
[41] Kaushik Sengupta, et al., “Silicon integrated 280 GHz imaging chipset with 4 4 SiGe receiver array and CMOS source,” IEEE Trans. THz Sci. Technol., vol. 5, no. 3, pp. 427-437, May. 2015.
[42] Chun-Hsing Li, et al., “A 340-GHz Low-Cost and High-Gain On-Chip Higher-Order Mode Dielectric Resonator Antenna for THz Applications,” IEEE Trans. THz Sci. Technol., vol. 7, no. 3, pp. 284-294, May. 2016.
指導教授 李俊興(Chun-Hsing Li) 審核日期 2017-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明