博碩士論文 103521008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.117.8.6
姓名 吳俊弘(Chun-Hung Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 多輸入多輸出前編碼系統之奇異值分解處理器設計與實現
(Design and Implementation of an SVD processor for MIMO precoding systems)
相關論文
★ 具輸出級誤差消除機制之三位階三角積分D類放大器設計★ 應用於無線感測網路之多模式低複雜度收發機設計
★ 用於數位D類放大器的高效能三角積分調變器設計★ 交換電容式三角積分D類放大器電路設計
★ 適用於平行處理及排程技術的無衝突定址法演算法之快速傅立葉轉換處理器設計★ 適用於IEEE 802.11n之4×4多輸入多輸出偵測器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 3GPP LTE正交分頻多工存取下行傳輸之接收端細胞搜尋與同步的設計與實現
★ 應用於3GPP-LTE下行多天線接收系統高速行駛下之通道追蹤與等化★ 適用於正交分頻多工系統多輸入多輸出訊號偵測之高吞吐量QR分解設計
★ 應用於室內極高速傳輸無線傳輸系統之 設計與評估★ 適用於3GPP LTE-A之渦輪解碼器硬體設計與實作
★ 下世代數位家庭之千兆級無線通訊系統★ 協作式通訊於超寬頻通訊系統之設計
★ 適用於3GPP-LTE系統高行車速率基頻接收機之設計★ 多使用者多輸入輸出前編碼演算法及關鍵組件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 超大型多輸入多輸出系統(Large-scale multiple-input multiple-output system)被認為是第五代行動通訊系統的候選技術之一。在新的行動通訊系統中,基地台與使用者裝置所能使用的天線數量大幅提高,因此超大型多輸入多輸出系統相較於傳統的系統有著更高的運算複雜度。論文中主要是探討在此一系統中利用奇異質分解(singular value decomposition, SVD)求得前編碼矩陣的演算法,利用SVD可以將通道矩陣分解成數個互相不會干擾的子通道,而傳輸資料時會選擇通道增益較強的子通道進行傳輸。為了降低奇異值分解的運算複雜度,演算法分成三個階段,三個階段皆以Givens rotation為基礎,第一階段為雙對角化演算法,第二階段為Golub-Reinsch SVD演算法搭配矩陣劃分(split)和矩陣縮減(deflate)兩種機制,第三階段為位移QR演算法並搭配提前終止機制。所提出之演算法可以依照系統需求調整矩陣之收斂速度及所獲得奇異值之精確度。
而在硬體設計方面,則以支援到8×8的多輸入輸出系統為考量,因此主要根據第一階段與第二階段演算法完成奇異值分解之硬體設計,可以支援2×2∼8×8的矩陣維度,資料流格式採用外部浮點數內部定點數型式來表示,以精準涵蓋8×8通道矩陣的奇異值分布範圍,並且使用坐標軸旋轉數位計算器(Coordinate Rotation Digital Computer, CORDIC),來實現Givens rotation的運算,CORDIC內部則有管線化(pipeline)設計,並將兩個CORDIC組成一個基礎的處理單元(processing element, PE),來完成第一階演算法及第二階演算法,完成第一階段演算法的時脈週期數為171(clock cycles),在第二階演算法其門檻值為2^(-3)的條件下,完成一個8×8的矩陣分解所需的時脈週期數313。我們透過TSMC 40nm製程將晶片設計實現,其最高時脈操作頻率為185MHz,吞吐量(Throughput)為每一秒可分解591K個矩陣(Matrix/s)。
摘要(英)
Large-scale MIMO (multiple-input multiple-output) technique is considered to be one of the promising solution in the 5th generation wireless communication system. Due to the increasing antenna number at both the transmitter and receiver sides, higher computational complexity is induced. Singular value decomposition (SVD) is a kind of decom-position scheme that is widely used to decompose the channel matrix into several spatial sub-channels. Usually the sub-channels with large channel gains (singular values) are chosen for transmission. A three-stage algorithm is used, and all can be accomplished by Givens rotation. Bi-diagonalization is employed at the first stage while Golub-Reinsch SVD with split and deflation is adopted at the second stage. We use shifted QR with early termination at the third stage. The SVD procedure can adjust the convergence speed and the accuracy according to the system requirements.
Considering SVD in 8×8 MIMO systems, the hardware implementation is mainly based on the first-stage and the second-stage operations. Our hardware can support channel matrix dimension from 2×2 to8×8. External floating-point and internal fixed-point representations are used for the datapath. The Givens rotation is realized by Coordinate Rotation Digital Computer (CORDIC). Two CORDIC modules constitute one processing element (PE). It takes 171 clock cycles for the first-stage operation and 313 clock cycles for the entire decomposition if the threshold for split and deflation at the second stage is set to 2^(-3). The hardware is implemented by TSMC 40nm CMOS technology. The maximum operating frequency is 185MHz and the throughput is 591K matrixes per second.
關鍵字(中) ★ 奇異值分解
★ 坐標軸旋轉數位計算器
★ 多輸入多輸出前編碼系統
關鍵字(英) ★ Singular value decomposition
★ Coordinate Rotation Digital Computer
★ MIMO precoding systems
論文目次
摘要 i
Abstract ii
目錄 iii
圖示目錄 vi
表格目錄 xi
第一章 緒論 1
1.1. 簡介 1
1.2. 研究動機 1
1.3. 論文組織 2
第二章 超大型多輸入多輸出系統(Large-scale MIMO System) 3
2.1. 系統模型(System Model) 3
2.2. 發送與接收端之天線陣列(Antenna array) 5
2.3. 奇異值分解前編碼矩陣(SVD Based MIMO Precoding Matrix) 8
2.4. 奇異值分解所使用之演算法(Algorithm of SVD) 10
2.4.1. Complex-value Given Rotation 演算法 11
2.4.2. Bidiagonalization 演算法 14
2.4.3. Implicit QR 演算法 18
第三章 超大型多輸入多輸出奇異值分解前編碼系統(SVD Based Large-scale MIMO Precoding System) 23
3.1. 超大型多輸入多輸出奇異值分解前編碼系統之分析與流程(The Process and Analysis of SVD Based Large-scale MIMO Precoding System) 23
3.2. 第一階段演算法(The First Phase of SVD) 27
3.3. 第二階段演算法(The Second Phase of SVD) 29
3.4. 第三階段演算法(The Third Phase of SVD) 32
3.5. 演算法模擬(Simulation) 34
第四章 奇異值分解硬體架構設計與實作(Hardware Design and Implementation of SVD) 38
4.1. 電路架構圖及介紹(Block Diagram of SVD Processor) 38
4.2. CORDIC架構(Hardware Architecture of CORDIC) 40
4.2.1. CORDIC硬體架構(CORDIC) 40
4.2.2. 數值動態範圍分析(Analysis of the Datapath Dynamic Range) 43
4.2.3. 浮點數資料流硬體架構(Floating-Point Data Paths) 46
4.3. 硬體控制及排程(Control and Schedule of Hardware) 52
4.3.1. CORDIC模式控制 52
4.3.2. Bidiagonalization排程及控制 54
4.3.3. GR SVD及Implicit QR with Shift Algorithm排程及控制 59
4.4. 記憶體架構及提取(Memory) 67
4.5. RTL模擬與C、Matlab模擬之比較(Compare RTL with C and Matlab) 71
第五章 硬體實現 82
5.1. 硬體設計流程 82
5.2. 實作結果 85
5.2.1. Pre-layout Simulation 85
5.2.2. 晶片平面圖 88
5.2.3. LVS驗證結果 93
5.2.4. Post-layout Simulation 93
5.3. 硬體實作結果與比較 96
第六章 結論 98
參考文獻 99
參考文獻
[1] Erik G. Larsson, Ove Edfors, Fredrik Tufvesson, Thomas L. Marzetta, “Massive MIMO for Next Generation Wireless Systems,” IEEE Communications Magazine, Vol. 52, No. 2, pp. 186-195, Feb. 2014.
[2] Ngo, Hien Quoc, “Massive MIMO: Fundamentals and System Designs,” doctoral thesis, Linköping university, department of electrical engineering, communication systems. Linköping university, the institute of technology.
[3] Y. G. Lim and C. B. Chae, “Compressed channel feedback for correlated massive systems,” in Proc. of International Conference on Communications 2014, pp. 360-364.
[4] T. S. Pollock and T. D. A. R. A. Kennedy, “Introducing ’space’ into space-time MIMO capacity calculations: a new closed form upper bound,” in Proc. IEEE Int. Conf. on Telecommun., March 2003, pp. 1536–1541.
[5] L. Hogben, ”Handbook of Linear Algebra,” Chapmen & Hall/CRC, Second Edition, 2013.
[6] Gene H. Golub and Charles F. Van Loan, “Matrix Computations,” Chapter 8, Third Edition, 1996.
[7] Chin-Yi Liu, “Design of SVD Algorithm and Architecture for MIMO Precoding System,” National Central University, 2016.
[8] Wen-Da Chen and Yin-Tsung Hang, “A Constant Throughput Geometric Mean Decomposition Scheme Design for Wireless MIMO Precoding,” IEEE Transactions on Vehuicular Technology, volume: 62, issue: 5, pp. 2080-2090, January 2013.
[9] Yin-Tsung Hwang, Wei-Da Chen, and Cheng-Ru Hong, “A Low Complexity Geometric Mean Decomposition Computing Scheme and Its High Throughput VLSI Implementation,” IEEE Trans. Circuits and System I: Regular Paper, vol: 61, Issue: 4, pp. 1170-1182, November 2013.
[10] J. H. Wilkinson, “Global convergence of tridiagonal QR algorithm with origin shifts,” Linear Algebra Appl. 1, 1968, 409-420G.
[11] S. Zhou and G. B. Giannakis, “Adaptive modulation for multi-antenna transmissions with channel feedback, ” in Proc. of International Conference on Communications 2003, pp. 2281-2285.
[12] T. L Wang and W. B. Gragg, “Convergence of the shifted QR algorithm for Unitary Hessenberg matrices,” Mathematics of Computation, vol. 71, pp. 1473-1496, Nov. 2001.
[13] C. H. Yang, C. W. Chou, C. S. Hsu, and C. E. Chen, “A systolic array based GTD processor with a parallel algorithm,” IEEE Transactions on Circuits and Systems I:Regular papers, vol. 62, Iss. 4, pp. 1099-1108, Apr. 2015.
指導教授 蔡佩芸(Pei-Yun Tsai) 審核日期 2017-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明