參考文獻 |
[1] H. Kim, J. Son, and J. Lee, “A high-speed sliding-mode observer for the sensorless speed control of a PMSM,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4069–4077, Sep. 2011.
[2] S. Kim, Y. D. Yoon, S. K. Sul, and K. Ide, “Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 488–497, Jan. 2013.
[3] T. Senjyu, T. Shingaki, and K. Uezato, “Sensorless vector control of synchronous reluctance motors with disturbance torque observer,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 402-407, Apr. 2001.
[4] N. Bianchi, M. Degano, and E. Fornasiero, “Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 187–195, Jan./Feb. 2015.
[5] F. J. Lin, Y. C. Hung, J. M. Chen, and C. M. Yeh, “Sensorless IPMSM drive system using saliency back-EMF-based intelligent torque observer with MTPA control,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1226–1241, May 2014.
[6] J. Lemmens, P. Vanassche, and J. Driesen, “PMSM drive current and voltage limiting as a constraint optimal control problem,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 2, pp. 326–338, Jun. 2014.
[7] T. Sun, J. Wang, and X. Chen, “Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036–5045, Sep. 2015.
[8] R. Antonello, M. Carraro, and M. Zigliotto, “Maximum-torque-per-ampere operation of anisotropic synchronous permanent-magnet motors based on extremum seeking control,: IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 5086–5093, Sep. 2014.
[9] A. Ahmed, Y. Sozer, and M. Hamdan, “Maximum torque per ampere control for interior permanent magnet motors using DC link power measurement,” in Proc. IEEE Appl. Power Electron. Conf., pp. 826–832, 2014.
[10] S. Bolognani, R. Petrella, A. Prearo, and L. Sgarbossa, “Automatic tracking of MTPA trajectory in IPM motor drives based on AC current injection,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 105–114, Jan./Feb. 2011.
[11] S. Bolognani, L. Sgarbossa, A. Prearo, and R. Petrella, “On-line tracking of the MTPA trajectory in IPM motors via active power measurement,” in Proc. Int. Conf. Elect. Mach., pp. 1–7, 2010.
[12] T. Sun, and J. Wang, “Extension of Virtual Signal Injection Based MTPA Control for Interior Permanent Magnet Synchronous Machine Drives into Field Weakening Region,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 6809–6817, Nov. 2015.
[13] T. D. Do, S. Kwak, H. H. Choi, and J. W. Jung, “Suboptimal control scheme design for interior permanent magnet synchronous motors: An SDRE-based approach,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 3020–3031, Jun. 2014.
[14] Y. X. Su, C. H. Zheng, and B. Y. Duan, “Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors,” IEEE Trans. Ind. Electron., 2005, vol. 52, no. 3, pp. 814–823, Jun. 2005.
[15] J. Li, H. P. Ren, Y. R. Zhong “Robust speed control of induction motor drives using first-order auto-disturbance rejection controllers,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 712–720, Jan./Feb. 2015.
[16] H. H. Choi, N. T. T. Vu, and J. W. Jung,”Digital implementation of an adaptive speed regulator for a PMSM,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 3–8, Jan. 2011.
[17] W. Li, and Y. Hori, “Vibration suppression using single neuron-based PI fuzzy controller and fractional-order disturbance observer,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 117–126, Feb. 2007.
[18] W. S. Huang, C. W. Liu, P. L. Hsu, and S. S. Yeh, “Precision control and compensation of servomotors and machine tools via the disturbance observer,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 420–429, Jan. 2010.
[19] W. Yu and X. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 411–420, Jun. 2004.
[20] F. J. Lin, H. J. Shieh, P. K. Huang, and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 53, no. 9, pp. 1649–1661, Sep. 2006.
[21] F. J. Lin, P. H. Chou, C. S. Chen, and Y. S. Lin, “DSP-based cross-coupled synchronous control for dual linear motors via intelligent complementary slidingmode control,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1061–1073, Feb. 2012.
[22] H. Chaoui and P. Sicard, “Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1123–1133, Feb. 2012.
[23] M. A. Khanesar, E. Kayacan, M. Teshnehlab, and O. Kaynak, “Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4443–4455, Nov. 2012.
[24] J. Zhang, G. G. Walter, Y. Miao, and W. N. W. Lee, “Wavelet neural networks for function learning,” IEEE Trans. Signal Process., vol. 43, no. 6, pp. 1485–1497, Jun. 1995.
[25] H. Pan and L. Z. Xia, “Efficient object recognition using boundary representation and wavelet neural network,” IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2132–2149, Dec. 2008.
[26] C. H. Lu, “Wavelet fuzzy neural networks for identification and predictive control of dynamic systems,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 3046–3058, Jul. 2011.
[27] F. J. Lin, K. H. Tan, and J. H. Chiu, “Active islanding detection method using wavelet fuzzy neural network,” in Proc. IEEE Int. Conf. Fuzzy Syst., pp. 1–8., 2012.
[28] F. J. Lin, K. H. Tan, D. Y. Fang, and Y. D. Lee, “Intelligent controlled three-phase squirrel-cage induction generator system using wavelet fuzzy neural network for wind power,” IET Renew. Power Generat., vol. 7, no. 5, pp. 552–564, 2013.
[29] H. Wang, M. Yang, L. Niu, and D. Xu, “Current-loop bandwidth expansion strategy for permanent magnet synchronous motor drives,” in Proc. IEEE 5th Conf. Ind. Electron. Appl., pp. 1340–1345, 2010.
[30] A. Sarca, B. Naum, and D. Matianu, “A new approach for automatic tuning of electrical drives current loop controllers,” Advanced Topics in Electrical Engineering (ATEE), 2015 9th International Symposium, pp. 231-235, May 2015.
[31] J. Bocker, S. Beineke, and A. Bahr, “On the control bandwidth of servo drives,” in Proc. 13th Eur. Conf. Power Electron. Appl., pp. 1–10, 2009.
[32] C. J. Hsu and Y. S. Lai, “Novel On-Line Optimal Bandwidth Search and Auto Tuning Techniques for Servo Motor Drives, ” in proc. IEEE Energy Conversion Congress and Expo. (ECCE), PP. 1-8, 2016.
[33] L. Niu, D. Xu, M. Yang, X. Gui, and Z. Liu, “On-line inertia identification algorithm for PI parameters optimization in speed loop,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 849–858, Feb., 2015.
[34] 高子胤,「以反電動勢為基礎之比例積分微分類神經網路估測器之無感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國100年7月。
[35] Microchip,MCP4922 datasheet.
[36] 瑞智精密股份有限公司, http://www.rechi.com
[37] 陳家銘,「以單一直流鏈電流感測器結合低轉速轉矩補償之無轉軸位置感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國102年6月。
[38] 劉昌煥,「交流電機控制」,東華書局,民國92年。
[39] Texas Instruments,AM26LS32ACN datasheet.
[40] 陳仕堯,「採用功率擾動之每安培最大轉矩控制內藏式永磁同步馬達驅動器之研製」,中央大學電機工程系,碩士論文,民國105年6月。
[41] F. J. Lin, R. J. Wai, and P. K. Huang, “Two-axis motion control system using wavelet neural network for ultrasonic motor drives,” IEE Proc. Electr. Power Appl., vol. 151, no. 5, pp. 613-621, Sep. 2004.
[42] S. J. Yoo, Y. H. Choi, J. B. Park, “Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: Adaptive learning rates approach,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 53, no. 6, pp. 1381-1395, Jun. 2006.
[43] R. J. Wai, and C. M. Li, “Design of dynamic petri recurrent fuzzy neural network and its application to path-tracking control of nonholonomic mobile robot,” IEEE Trans. Indust. Electron., vol. 56, no. 7, pp. 2667-2683, Jul. 2009. |