博碩士論文 104521061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.128.198.107
姓名 張淳威(Chun-Wei Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高功率氮化鎵異質場效電晶體動態特性之研究
(Study of the Dynamic Characteristics of High-Power GaN Heterostructure Field-Effect Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文係針對一增強型(E-mode)高功率氮化鎵異質場效電晶體,探討其動態特性與電荷陷捕行為之關係。過去之文獻報導,氮化鎵異質場效電晶體之動態電阻會隨著截止狀態(off-state)之汲極偏壓增加而增加,反映出越嚴重的陷捕效應。但是隨著更多元之磊晶結構與製程的出現,有些氮化鎵元件卻有大為不同的特性,也就是元件經歷高汲極偏壓後,其動態電阻反而會小於截止前之電阻,亦即動態電阻比值小於1。
為此,本研究針對此類元件之動態電容(∆Cds)進行測量分析,以了解其與動態電阻之關聯。此元件之動態電容顯示,元件在低截止偏壓(200 V)時,電子被陷捕(trapping)的情形明顯,而在高截止偏壓(600 V)時,則以脫阱(detrapping)行為為主。此脫阱行為發生後,會對元件產生長時間的影響,亦即約12小時才能夠恢復至初始狀態。根據變溫量測所得之活化能得知,與陷捕有關之陷阱(TP1)屬於初始不帶電子的陷阱(initially empty traps),推估其陷阱能階在導電帶下方0.54 eV。而主要造成脫阱效應之陷阱(DP1, DP2)為初始狀態時就帶有電子的陷阱(initially occupied traps),推估其陷阱能階分別為導電帶下方0.44 eV以及0.59 eV。造成脫阱效應之後,元件之導通電流隨即上升,然而隨著電子逐漸回填,導通電流也逐漸下降恢復平衡值。
摘要(英)
In this work, the dynamic characteristics of an enhancement-mode (E-mode) high power GaN heterostructure field-effect transistor (HFET) are investigated to correlate with charge trapping in the device. It has been reported that the dynamic on-resistance of GaN-based FETs increases with the off-state drain voltage due to severe charge trapping in the devices. However, we have recently observed contrary behavior on devices fabricated in a commercial foundry. That is the dynamic on-resistance is actually smaller than the initial value after a higher off-state drain voltage stress. In his work, capacitance- voltage characteristics of the device after off-state stress are measured to obtain ∆Cds and correlated with its dynamic on-resistance. Based on these results, a model is proposed in which charge-trapping process occurs under low off-state stress whereas charge-detrapping effect becomes significant with increasing off-state stress. The detrapping process have a prolonged influence on the device; that is, it will not recover to the initial state within 12 hours. According to the activation energy obtained by the temperature-dependent drain current transient measurements, this study reveals that a trap dsigated as TP1, which is initially empty trap with an apparent trap energy level of 0.54 eV below the conduction band, is related to trapping effect. Others traps, i.e. DP1 and DP2, are initially occupied traps with an apparent trap energy level of 0.44 eV and 0.59 eV below the conduction band, respectively. Both of them are related to the detrapping effect. Due to the detrapping process, the on-current of the device is higher than that before off-state stress. As the electrons gradually refill the traps, the on current gradually decreases to restore the equilibrium value.
關鍵字(中) ★ 氮化鎵
★ 氮化鋁鎵
★ 動態電阻
★ 電晶體
關鍵字(英) ★ GaN
★ AlGaN
★ Dynamic on resistance
★ HEMT
論文目次 論文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 導論 1
1.1 前言 1
1.2 氮化鎵材料特性 3
1.2.1 矽、碳化矽、氮化鎵特性比較 3
1.2.2 氮化鎵材料之極化效應 4
1.3 研究動機 8
1.3.1 動態電阻起因與發展以及所面臨的特殊動態特性 8
1.3.2 相關論文回顧 12
1.4 論文架構 16
第二章 高電壓電容-電壓量測與動態電阻量測探討元件動態特性 17
2.1 不同截止偏壓之回復電流曲線與動態特性 17
2.2 高偏壓截止狀態誘發脫阱效應之探討 21
2.3 陷捕/脫阱效應之暫態分析 25
2.4 緩衝層電容之陷捕/脫阱效應 33
2.5 本章總結 37
第三章 高電壓誘發脫阱效應之模型 38
3.1 高電場誘發高位障陷阱之探討 38
3.2 陷捕/脫阱效應之陷阱能階萃取 41
3.3 截止狀態之物理模型 52
3.4 本章總結 61
第四章 結論 62
參考文獻 64
參考文獻
[1] B. J. Baliga, ”Power semiconductor device figure of merit for high-frequency applications,” IEEE Electron Device Letters, vol. 10, pp. 455-457, 1989.
[2] E. Johnson, ”Physical limitations on frequency and power parameters of transistors,” vol. 13, pp. 27-34, 1965.
[3] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, et al., ”High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate,” Solid-State Electronics, vol. 50, pp. 1744-1747, 2006.
[4] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, et al., ”Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 87, pp. 334-344, 2000.
[5] R. Quay, Gallium Nitride Electronics vol. 96: Springer Berlin Heidelberg, 2008.
[6] M. A. Khan, J. N. Kuznia, M. S. Shur, and Q. C. Chen, ”Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias,” Electronics Letters, vol. 30, pp. 2175-2176, 1994.
[7] W. Saito, T. Nitta, Y. Kakiuchi, Y. Saito, K. Tsuda, I. Omura, et al., ”A 120-W Boost Converter Operation Using a High-Voltage GaN-HEMT,” IEEE Electron Device Letters, vol. 29, pp. 8-10, 2008.
[8] K. Asano, Y. Miyoshi, K. Ishikura, Y. Nashimoto, M. Kuzuhara, and M. Mizuta, ”Novel high power AlGaAs/GaAs HFET with a field-modulating plate operated at 35 V drain voltage,” pp. 59-62, 1998.
[9] S. Karmalkar and U. K. Mishra, ”Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate,” IEEE Transactions on Electron Devices, vol. 48, pp. 1515-1521, 2001.
[10] Y. Ando, Y. Okamoto, H. Miyamoto, T. Nakayama, T. Inoue, and M. Kuzuhara, ”10-W/mm AlGaN-GaN HFET with a field modulating plate,” IEEE Electron Device Letters, vol. 24, pp. 289-291, 2003.
[11] A. Chini, D. Buttari, R. Coffie, S. Heikman, S. Keller, and U. K. Mishra, ”12 W/mm power density AlGaN/GaN HEMTs on sapphire substrate,” Electronics Letters, vol. 40, p. 73, 2004.
[12] Y. Okamoto, Y. Ando, T. Nakayama, K. Hataya, H. Miyamoto, T. Inoue, et al., ”High-Power Recessed-Gate AlGaN–GaN HFET With a Field-Modulating Plate,” IEEE Transactions on Electron Devices, vol. 51, pp. 2217-2222, 2004.
[13] C. Rongming, A. Corrion, M. Chen, L. Ray, D. Wong, D. Zehnder, et al., ”1200-V Normally Off GaN-on-Si Field-Effect Transistors With Low Dynamic on -Resistance,” IEEE Electron Device Letters, vol. 32, pp. 632-634, 2011.
[14] W. Hanxing, L. Cheng, J. Qimeng, T. Zhikai, and K. J. Chen, ”Dynamic Performance of AlN-Passivated AlGaN/GaN MIS-High Electron Mobility Transistors Under Hard Switching Operation,” IEEE Electron Device Letters, vol. 36, pp. 760-762, 2015.
[15] C. Zhang, M. Wang, B. Xie, C. P. Wen, J. Wang, Y. Hao, et al., ”Temperature Dependence of the Surface- and Buffer-Induced Current Collapse in GaN High-Electron Mobility Transistors on Si Substrate,” IEEE Transactions on Electron Devices, vol. 62, pp. 2475-2480, 2015.
[16] X. Lu, J. Ma, Z. Liu, H. Jiang, T. Huang, and K. M. Lau, ”In situ SiNx gate dielectric by MOCVD for low-leakage-current ultra-thin-barrier AlN/GaN MISHEMTs on Si,” physica status solidi (a), vol. 211, pp. 775-778, 2014.
[17] M. Meneghini, R. Silvestri, S. Dalcanale, D. Bisi, E. Zanoni, G. Meneghesso, et al., ”Evidence for temperature-dependent buffer-induced trapping in GaN-on-silicon power transistors,” pp. 2E.2.1-2E.2.6, 2015.
[18] M. Meneghini, P. Vanmeerbeek, R. Silvestri, S. Dalcanale, A. Banerjee, D. Bisi, et al., ”Temperature-Dependent Dynamic RON in GaN-Based MIS-HEMTs: Role of Surface Traps and Buffer Leakage,” IEEE Transactions on Electron Devices, vol. 62, pp. 782-787, 2015.
[19] K. Man Ho, K. Y. Wong, Y. S. Lin, F. W. Yao, M. W. Tsai, Y. C. Chang, et al., ”CMOS-compatible GaN-on-Si field-effect transistors for high voltage power applications,” in IEEE Electron Devices Meeting (IEDM), 2014, pp. 17.6.1-17.6.4.
[20] W.-C. Liao, J.-I. Chyi, and Y.-M. Hsin, ”Investigations of dynamic performance in AlGaN/GaN HFETs with field plates by stressed C-V and dynamic on-resistance measurements,” physica status solidi (a), vol. 212, pp. 1099-1103, 2015.
[21] C. Liu, A. Salih, and B. Padmanabhan, ”Successful Demonstrations of Stable High Temperature Dynamic Rdson and UIS Capability of GaN Power Devices ” in Applied Power Electronics Conference (APEC), 2015.
[22] G. Meneghesso, M. Meneghini, R. Silvestri, P. Vanmeerbeek, P. Moens, and E. Zanoni, ”High voltage trapping effects in GaN-based metal-insulator-semiconductor transistors,” Japanese Journal of Applied Physics, vol. 55, p. 01AD04, 2016.
[23] Z. Zhang, W. Li, K. Fu, G. Yu, X. Zhang, Y. Zhao, et al., ”AlGaN/GaN MIS-HEMTs of Very-Low Vth Hysteresis and Current Collapse With In-Situ Pre-Deposition Plasma Nitridation and LPCVD-Si3N4 Gate Insulator,” IEEE Electron Device Letters, vol. 38, pp. 236-239, 2017.
[24] M. Caesar, M. Dammann, V. Polyakov, P. Waltereit, W. Bronner, M. Baeumler, et al., ”Generation of traps in AlGaN/GaN HEMTs during RF-and DC-stress test,” pp. CD.6.1-CD.6.5, 2012.
[25] M. J. Anand, G. I. Ng, S. Arulkumaran, B. Syamal, and X. Zhou, ”Distribution of trap energy level in AlGaN/GaN high-electron-mobility transistors on Si under ON-state stress,” Applied Physics Express, vol. 8, p. 104101, 2015.
[26] H. S. Jie, S., S. Lenci, B. Bakeroot, R. Venegas, G. Groeseneken, and S. Decoutere, ”Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode,” Applied Physics Letters, vol. 106, p. 083502, 2015.
[27] N. K. Subramani, J. Couvidat, A. A. Hajjar, J.-C. Nallatamby, R. Sommet, and R. Quere, ”Identification of GaN Buffer Traps in Microwave Power AlGaN/GaN HEMTs Through Low Frequency S-Parameters Measurements and TCAD-Based Physical Device Simulations,” IEEE Journal of the Electron Devices Society, vol. 5, pp. 175-181, 2017.
[28] J. Hu, S. Stoffels, S. Lenci, G. Groeseneken, and S. Decoutere, ”On the Identification of Buffer Trapping for Bias-Dependent Dynamic RON of AlGaN/GaN Schottky Barrier Diode With AlGaN:C Back Barrier,” IEEE Electron Device Letters, vol. 37, pp. 310-313, 2016.
[29] W. C. Liao, Y. L. Chen, C. H. Chen, J. I. Chyi, and Y. M. Hsin, ”The behavior of off-state stress-induced electrons trapped at the buffer layer in AlGaN/GaN heterostructure field effect transistors,” Applied Physics Letters, vol. 104, p. 033503, 2014.
[30] A. Hu, X. Yang, J. Cheng, L. Guo, J. Zhang, W. Ge, et al., ”Spatial identification of traps in AlGaN/GaN heterostructures by the combination of lateral and vertical electrical stress measurements,” Applied Physics Letters, vol. 108, p. 042107, 2016.
[31] D. W. Cardwell, A. Sasikumar, A. R. Arehart, S. W. Kaun, J. Lu, S. Keller, et al., ”Spatially-resolved spectroscopic measurements of Ec − 0.57 eV traps in AlGaN/GaN high electron mobility transistors,” Applied Physics Letters, vol. 102, p. 193509, 2013.
[32] A. R. Arehart, A. Sasikumar, G. D. Via, B. Poling, E. R. Heller, and S. A. Ringel, ”Evidence for causality between GaN RF HEMT degradation and the EC - 0.57 eV trap in GaN,” Microelectronics Reliability, vol. 56, pp. 45-48, 2016.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2017-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明