博碩士論文 104323103 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.137.218.230
姓名 梁宏瑋(Hung-Wei Liang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電化學加工方法研磨加工碳化鎢材料表面氧化層之參數分析
(The Investigation of Electrochemical Machining Characteristics for Oxide Layer of Tungsten Carbide Surface)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 碳化鎢合金,若使用傳統加工方法加工,由於硬度過高,會發生材料移除率低、刀具磨耗嚴重等問題,因此利用非傳統電化學加工解決過去加工上的困擾。然而碳化鎢在加工後,表面會有一層氧化層附著在工件表面而阻礙加工,導致電流下降,因此需要藉由外力移除。
本文探討共分為兩個部分,第一部分探討的是改變四個變數,包括研磨棒磨料粒度、研磨棒轉速、電解液濃度、操作電壓,搭配硝酸鈉(NaNO3)為中性電解液,再借由田口穩健設計,以此得到實驗中影響較顯著的實驗因子;第二部分為探討電化學實驗加工後,碳化鎢材料表面氧化層移除量、碳化鎢表面的粗糙度,作為探討加工後的最佳參數。
對於本研究,利用電化學加工方法研磨加工碳化鎢材料表面氧化層最佳因子水準組合為A3B2C3D2,即粒度 #170、研磨棒轉速50 rpm、電解液濃度15 wt%、電壓7 V。從實驗結果比較,電化學研磨加工的效益,無論是材料移除量或表面粗糙度,都遠比電化學加工或研磨加工來的佳。也驗證了電化學研磨加工中的研磨加工只佔小部份比例,其作用是將材料表面氧化層去除,而非做研磨切削,且其加工效果卻優於單純的電化學加工。
摘要(英) The problem encountered in the traditional machining of tungsten carbide is its superior hardness, which results in a low material removal rate and serious wear of tools. The none-traditional electrochemical machining can be used to conquer the issue. During the electrochemical machining process, there would be an oxide layer adhesion on the material surface. It could obstruct the machining process. The grinding ECM is adapted in this research to remove the oxide layer and enhance the machining process.
The research is divided into two parts. The first part is to investigate the effects of four working parameters, including the grain size of the grinding rod, tool’s rotating speed, concentration of electrolyte, and applied voltage on the machining results. NaNO3 is used as electrolyte. Taguchi - method is used to find out the corresponding influence factor for each working parameter. The second part is to discuss the removal rate and the surface roughness caused by grinding, electrochemical machining and ECG respectively.
Results show that the optimal working parameter is A3B2C3D3, namely Grain size # 170, revolutions 50 rpm, concentration of electrolyte 10 wt%, and applied voltage 8 V. Under this condition, the resulting material removal is 88.44±3 mg, and the surface roughness is 1.33±0.2 μm.
If only electrochemical effect is included, the resulting material removal is found to be 60.02±3 mg, and the surface roughness is 1.41±0.2μm. If only grinding effect is included, the material is hardly machined. Then ECG is better than both ECM and grinding. It indicates that the grinding process in ECG is not the main factor for material removal, but to remove the oxide layer only.
關鍵字(中) ★ 電化學加工
★ 電化學研磨
★ 磨料粒度
★ 移除量
★ 表面粗糙度
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 XI
圖目錄 XII
符號說明 XIV
第一章 緒論 1
1-1前言 1
1-2電化學加工 3
1-3電化學研磨加工 5
1-4碳化鎢特性 6
1-5文獻回顧 7
1-5-1碳化鎢電化學加工 7
1-5-2電化學研磨加工 9
1-6研究目的 11
第二章 基礎理論 12
2-1電化學反應式 12
2-1電化學加工基本理論 13
2-1-1電流密度(Current Density) 14
2-1-2電流效率(Current Efficiency) 15
2-1-3電流分佈 15
2-1-4極化(Polarization) 16
2-2電解液導電度(Conductivity) 19
2-2-3導電度與濃度之關係 20
2-3線性掃描伏安法 21
2-4電化學拋光原理 22
2-5液相質傳動力學 24
2-6田口實驗計畫 25
2-6-1參數的種類 26
2-6-2信號雜音比 27
2-6-3變異數分析法 29
第三章 實驗設備方法與步驟 33
3-1實驗設備 33
3-1-1恆電位儀 33
3-1-2機台結構設計 34
3-1-3刀具進給控制系統 37
3-1-4直流電源供應器 37
3-1-5秤重計 38
3-1-6幫浦 38
3-1-7磁石攪拌器 38
3-1-8伺服馬達 39
3-1-9表面粗度測量儀 39
3-1-10金相顯微鏡 39
3-2實驗材料 40
3-2-1電解槽 40
3-2-2電極材料 40
3-2-3電解液 42
3-3直交表的建構 43
3-4實驗步驟與方法 45
3-4-1碳化鎢材料電化學特性 45
3-4-3電化學加工 46
3-4-4試片表面粗糙度量測 48
3-5實驗注意事項 48
第四章 結果與討論 50
4-1加工參數之探討 50
4-2 ANOVA與參數分析 53
4-2-1 ANOVA移除量參數分析 55
4-2-2 ANOVA表面粗糙度參數分析 57
4-3 最佳參數水準組合 58
4-4 研磨加工與電化學加工 60
第五章 結論與未來展望 62
5-1結論 62
5-2未來展望 63
參考文獻 65
附表 71
附圖 83
參考文獻 [1] 蘇興川等, “微細切削加工技術發展趨勢,” 機械月刊, 31卷, 第七期, pp. 82, (2005).
[2] J.A. McGeough, M. Leu, K.P. Rajurkar, A. DeSilva, and Q. Liu, “Electroforming process and application to micro/macro manufacturing,“ CIRP Annals Manufacturing Technology, Vol. 50 (1), pp. 499-502, (2001).
[3] S. H. Ahn, S. H. Ryu, D. K. Choi and C. N. Chua, “Electro-chemical micro drilling using ultra short pulses,” Precision Engineering, Vol. 28, pp. 129-34, (2004).
[4] B. Bhattachcryya, J. Munda, and M. Malapati, “Advancement in electrochemical micro-machining,” International Journal of Machine Tools and Manufacture, Vol. 44, pp. 1577-1578, (2004).
[5] 徐泰然、朱銘祥, 微機電系統與微系統, 設計與製造, 麥格羅希爾出版, 台北市, (2003).
[6] 賴陽譯, 電解加工與化學加工, 台南市復文書局, (1971).
[7] M. Hackert-Oschätzchen, A. Martin, G. Meichsner, M. Zinecker and A. Schubert, “Microstructuring of carbide metals applying jet electrochemical machining,” Precision Engineering, Vol. 37(3), pp. 621-634, (2013).
[8] J.A. McGeough, “Principles of electrochemical machining,“ Chapman Hall, London, p. 9, (1974).
[9] E. Suganuma, “Electrochemical behavior of cement carbide II,” Bull of Yamagata Univ. Eng., Vol. 11(2), pp. 197-204, (1971).
[10] 菅沼栄一, “超硬合金の電解加工に関する基礎的研究(第1報),” 精密機械, Vol. 44(4), pp. 502-507, (1978).
[11] 菅沼栄一, “超硬合金の電解加工に関する基礎的研究(第2報),” 精密機械, Vol. 44(8), pp. 926-931, (1978).
[12] 菅沼栄一, “超硬合金の電解加工に関する基礎的研究(第3報),” 精密機械, Vol. 44(11), pp. 1373-1379, (1978).
[13] 菅沼栄一, ”超硬合金の電解加工における電解生成物の生成過程と陰極電解による除去作用,” 電気加工学会誌, Vol. 13(26), pp. 3-20, (1980).
[14] A. M. Human, and H. E. Exner, ”Electrochemical behavior of tungsten-carbide hard metals,” Materials Science and Engineering, pp. 180-191, (1996).
[15] T. Haisch, E. Mittemeijer, and J. W. Schultze, “Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions microstructure of surface films formed by carbides,“ Electrochimica Acta, Vol. 47, pp. 235-241, (2001).
[16] S. Hochstrasser, Y. Mueller, C. Latkoczy, S Virtanen and P. Schmutz, “Analytical characterization of the corrosion mechanisms of WC–Co by electrochemical methods and inductively coupled plasma mass spectroscopy,” Corrosion Science, Vol. 49(4), pp. 2002-2020, (2007).
[17] S. H. Choi, S.H. Ryu and C.N. Chu, “Fabrication of WC micro-shaft by using electrochemical etching,“ International Journal of Advanced Manufacture Technology, Vol. 31, pp. 682-687, (2007).
[18] N. Schubert, M. Schneider and A. Michealis, “The mechanism of anodic dissolution of cobalt in neutral and alkaline electrolyte at high current density,” Electrochemical Acta, Vol. 113, pp. 748-754, (2013).
[19] N. Schubert, M. Schneider and A. Michaelis, “Electrochemical machining of cemented carbides,” International Journal of Refractory Metals and Hard Materials, Vol. 47, pp. 54-60, (2014).
[20] 木本康雄、桓野義昭、中川真二, “高精度電解複合鏡面加工的研究,” 精密工學會誌, pp. 353-358, (1988).
[21] M. S. Nikolova, A. Natarajan and P. C. Searson, “Electrochemical fabrication of sharp nickel tips in H2SO4 solution,” Journal of the Electrochemical Society, Vol. 144(2), pp. 455-460, (1997).
[22] D. Zhu and H. Y. Xu, “Improvement of electrochemical machining accuracy by using dual pole tool,” Journal of Materials Processing Technology, Vol. 129, pp. 15-18, (2002).
[23] H. Hocheng, Y. H. Sun, S. C. Lin and P. S. Kao, “A material removal analysis of electrochemical machining using flat-end cathode,” Journal of Materials Processing Technology, Vol.140, pp. 264-268, (2003).
[24] J. C. d. S. Neto, E. M. d. Silva and M. B. d. Silva, “Intervening variables in electrochemical machining,“ Journal of Materials 105 Processing Technology, Vol. 179, pp. 92-96, (2006).
[25] T. Kurita and M. Hattori, “A study of EDM and ECM/ECM-lapping complex machining technology,“ International Journal of Machine Tool and Manufacture, Vol. 46, pp. 1804-1810, (2006).
[26] X. H. Li, W. S. Zhao, and Z. L. Wang, “Study on micro elctrochemical machining at micro to meso-scale,” IEEE International Conference on Nano/Micro Engineering Molecular Systems.(2006).
[27] T. Kurita, C. Endo, Y. Matsui, H. Masuda, K. Terasawa, F. Tanaka, H. Ikeda, K. Oguchi and K. Kobayashi, “Mechanical/electrochemical complex machining method for efficient, accurate and environmentally benign process,” International Journal of Machine Tool and Manufacture, Vol. 48, pp. 1599-1604, (2008).
[28] K. C. De Berg, ”The development of the theory of electrolytic dissociation,” Science and Education, Vol. 12, pp. 397-419, (2003).
[29] J. Cirilo, E. Malaquias and M. Bacci, “Intervening variables in electrochemical machining,” Journal of Materials Processing Technology, Vol. 179, pp. 92-96, (2006).
[30] 田福助, 電化學-理論與應用, 高立圖書, 新北市, (2011).
[31] J. A. McGeough, ”Principles of electrochemical machining,” Chapman Hall, London, pp. 9, (1974).
[32] 態楚強、王月, 電化學, 新文京出版社, 台北, (2004).
[33] 萬海威, “多層印刷電路板之鍍銅製程,” 電路板資訊雜誌, pp. 7-24, (1988).
[34] M. Datta, and D. Landolt, “Fundamental aspects and applications of electrochemical microfabrication, “Electrochemical Acta, Vol. 45, pp. 2535–2558, (2000).
[35] 胡啟章, 電化學原理與方法, 五南圖書, 台北市, 12-13頁, (2002).
[36] C. Rosenkranz, M. M. Lorengel, and J. W. Schultze, “The surface structure during pulsed ECM of iron in NaNO3,“ Electrochemical Acta, Vol. 50, pp. 2009-2016, (2005).
[37] P. Novak and I. Rousar, “Intergranular corrosion in electrochemical machining,“ Materials Chemistry and Physics, Vol. 10, pp. 155-161, (1984).
[38] J. C. Imbeaux, and J. M. Savéant, “Convolutive potential sweep voltammetry : Introduction,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 44, pp. 169-187, (1973).
[39] J. Heyrovský, ”Electrolysis with the mercury drop cathode,” Chem. Listy, Vol. 16, pp. 256, (1992).
[40] W. C. Elmore, “Electrolytic polishing,” Journal of Applied Physics, Vol. 10, (2004).
[41] 黃忠良譯, 電化學, 復漢出版社, 台南市, (2001).
[42] 陳裕豐, “高潔淨閥件之流道表面處理-電解拋光(EP)技術,” 機械工業雜誌, 198期, 230-240頁, 9月, (1999).
[43] M. S. Hewidy, S. J. Ebeid, T. A. El-Taweel, and A. H. Youssef, ”Modeling the performance of ECM assisted by low frequency vibrations,” Journal of Materials Processing Technology, pp. 467-469, (2007).
[44] 范智文, 利用電化學加工製作微電極和微孔之研究與分析, 國立中央大學機械工程研究所博士論文, (2010).
[45] 黎正中譯, 穩健設計之品質工程, 台北圖書, (1993).
[46] 鍾清章等, 品質工程(田口方法), 中華民國品質學會, (1994).
[47] 鄭燕琴, 田口品質工程技術理論與實務, 中華民國品質學會, (1995).
[48] 蘇朝墩, 產品穩健設計~田口品質工程方法的介紹和應用, 中華民國品質學會, (1997).
[49] 朱樹敏, 電化學加工技術, 化學工業出版社, 39-49頁, 7月, (2006).
[50] 佐藤敏一, 電解加工與化學加工, 復文書局, 53頁, 2月, (1987).
[51] E. Seiden, “On the problem of construction of orthogonal arrays,” Annals of Mathematical Statistics, Vol. 25, pp. 151-156, (1954).
[52] R. L. Plackett, and K. P. Burman, ”The design of optimal multifactorial experiments,” Biometrika, Vol. 33, Issue 4, pp. 305-325, (1956).
[53] S. Addelman, “Orthogonal main effect plans for asymmetrical factorial experiments,” Technomitrics, Vol. 4, pp. 21-46, (1962).
[54] D. Raghavarao, Construction of combinatorial problem in design experiments, New York : John Wiley and Sons, (1971).
[55] O. Kempthome, The Design and Analysis of Experiments, New York : R. E. Krieger Publishing Co. (1979).
[56] 趙冠瑋, 常用金屬材料在硝酸鈉與氯化鈉電解液中電化學加工特性之探討, 國立中央大學機械工程研究所碩士論文, (2016).
[57] G. Taguchi, J. Keikakuho, and Maruzen, Vol.1 and 2 , 1977and 1978 (in Japanese)3rd Edition. Tokyo, Japan, English translation : G. Taguchi, System of Experimental Design, Edited by C. Don, New York : UNIPUB/Kraus International Publications, Vol. 1 and 2, (1987).
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2017-5-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明