博碩士論文 104521049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.147.83.74
姓名 黃泰寅(Tai-Yin Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
(Development of a Novel MTPA Control for Synchronous Reluctance Motor Drive System)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制
★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統
★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台
★ 智慧型同動控制之龍門式定位平台及應用★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統
★ 智慧型控制雙饋式感應風力發電系統之研製★ 無感測器直流變頻壓縮機驅動系統之研製
★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統★ 多重地網系統之人身安全驗證與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文的研究目的是研製與發展以數位訊號處理器為基礎的適應性步階迴歸控制拉格朗日乘數法之每安培最大轉矩控制於同步磁阻馬達驅動系統。首先,本研究先推導出同步磁阻馬達以磁場導向控制的動態模型。接著,將所設計好的積分-比例控制器應用於定速驅動系統控制上作馬達轉子機械速度命令的追隨。由於同步磁阻馬達定速系統上所產生的非線性時變轉矩是由電感與電流所決定的,為了提升同步磁阻馬達的性能以及效率,因此,使用傳統型每安培最大轉矩控制,但在實際應用上傳統型每安培最大轉矩控制是很難達到最佳效率的,因為同步磁阻馬達具有嚴重的磁場飽和現象,會造成真實每安培最大轉矩的超前角度較傳統型每安培最大轉矩的來的高。有鑒於此,本研究提出了適應性步階迴歸控制拉格朗日乘數法之每安培最大轉矩控制,利用拉格朗日乘數法得出在每安培最大轉矩時直軸與交軸的電流命令,且考慮電感變化並使用適應步階迴歸控制來估測系統中的電感值,並且減少磁飽和所造成的影響。除此之外,利用李亞普諾夫穩定性理論推導出適應律並且即時更新控制參數,最後,本研究以32位元浮點運算數位訊號處理器TMS320F28075完成所提出之同步磁阻馬達定速驅動系統,且利用模擬來驗證所提出之適應性步階迴歸控制拉格朗日乘數法之每安培最大轉矩控制的強健性及其效率性,以及利用實驗結果來驗證同步磁阻馬達驅動系統之開發的正確性。
摘要(英) An adaptive backstepping control (ABSC) based Lagrange multiplier (LM) maximum torque per ampere (MTPA) control of a synchronous reluctance motor (SynRM) is proposed in this study to construct a high-performance SynRM speed drive system. The dynamic model of a field-oriented SynRM speed drive is described first. Next, an integral-proportional controller is designed for the tracking of the speed reference. Since the torque of the SynRM is nonlinear and time-varying, it is very sensitive to the variations of the inductance and current. Therefore, a traditional MTPA control is using in the SynRM speed drive system. However, due to the saturation effect, the real MTPA current angle is higher than the traditional one in the practical. In the light of this, in order to further increase the robustness and effectiveness of the SynRM speed drive, an ABSC based LM MTPA (ABSCLMMTPA) control of the SynRM is proposed to achieve the real MTPA of the SynRM speed drive, using the LM to obtain the current command of the direct and quadrature axis. Then, the adaptive law can estimate the required inductance to reduce the saturation effect. In addition, the adaptive law is derived using Lyapunov stability theorem to update the control parameters in the real-time. Finally, the proposed speed control system is implemented in a 32-bit floating-point digital signal processor, TMS320F28075. The robustness and effectiveness of the proposed ABSCLMMTPA control system are verified by some simulated and experimental results.
關鍵字(中) ★ 適應性步階迴歸控制
★ 拉格朗日乘數法
★ 同步磁阻馬達
★ 每安培最大轉矩
★ 李亞普諾夫穩定性
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 5
1.3 論文貢獻 7
1.4 論文大綱 8
第二章 同步磁阻馬達驅動系統之控制板介紹 9
2.1 前言 9
2.2 TMS320F28075數位訊號處理器簡介 11
2.3 TMS320F28075週邊功能介紹 12
2.3.1 脈波寬度調變模組 12
2.3.2 中斷訊號 15
2.3.3 類比/數位轉換模組與數位/類比轉換模組 16
2.3.4 正交編碼器脈衝模組 17
2.3.5 串列周邊介面模組 19
2.4 以DSP為基礎的同步磁阻馬達控制驅動系統 20
2.4.1 TMS320F28075 DSP控制板 21
2.4.2 週邊電路擴充控制板 22
2.5 TMS320F28075數位訊號處理器控制板之電路 23
2.5.1 電壓源轉換電路 23
2.5.2 數位/類比轉換電壓準位轉換電路 23
2.6 週邊擴充控制板之電路 24
2.6.1 過電流保護電路 24
2.6.2 數位/類比轉換電路 25
第三章 同步磁阻馬達驅動系統 26
3.1 前言 26
3.2 同步磁阻馬達 28
3.3 同步磁阻馬達數學動態模型 29
3.4 座標轉換之電壓及磁阻轉矩方程式 31
3.5 同步磁阻馬達控制架構 33
3.5.1 磁場導向控制 33
3.5.2 傳統每安培最大轉矩控制 35
3.5.3 新型每安培最大轉矩控制 37
第四章 同步磁阻馬達之新型每安培最大轉矩控制 39
4.1 前言 39
4.2 目標函式:最大轉矩 41
4.3 目標函式:最小電流 44
第五章 同步磁阻馬達之適應性步階迴歸控制 系統 49
5.1 前言 49
5.2 適應性步階迴歸控制系統 50
5.2.1 適應性步階迴歸控制 50
5.2.2 適應性步階迴歸控制法則及穩定性證明 53
第六章 同步磁阻馬達驅動系統模擬與實驗結果 56
6.1 同步磁阻馬達驅動系統模擬 56
6.2 速度迴路控制器設計 57
6.2.1 同步磁阻馬達Simulink模擬架構 58
6.3 同步磁阻馬達之模擬結果 64
6.4 實驗結果 78
6.4.1 電流迴路控制 81
6.4.2 速度控制 84
6.4.3 傳統每安培最大轉矩控制 91
第七章 結論與未來展望 93
7.1 結論 93
7.2 未來展望 94
附錄 94
參考文獻 97
作者簡歷 105
參考文獻
[1] 廖偉辰,「工業馬達驅動系統節電分析」,核研所─能源簡析,2017年4月。
[2] 陳婉箐,「加速馬達產業升級,跨入高效新世代」,工業技術與資訊月刊,304期,2017年02月號。
[3] 經濟部能源局,「急起直追,2016年與全球先進國家同步」,能源報導-封面故事三,2014年10月號。
[4] D. G. Dorrell, “The challenges of neeting IE4 efficiency standards for induction and other machines,” in Proc. IEEE International Conference on Industrial Technology, pp. 213-218, Feb/Mar. 2014.
[5] 吳長恩,“具寬速度控制範圍之同步磁阻馬達驅動器研製”,碩士論文,國立台北科技大學電機工程系,民國一百零五年。
[6] 東元電機,智慧綠色工業產品。
[7] Efficiency classes of variable speed AC motors (IE-code), IEC TS 60034-30-2
[8] S. Taghavi and P. Pillay, “A sizing methodology of the synchronous reluctance motor for traction applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 329–340, Jun. 2014.
[9] “ABB SynRM motor & drive package – Super premium efficiency for HVAC application,” 8th edition of the european hpc infrastructure workshop, Mar. 2017
[10] T. Senjyu, T. Shingaki, and K. Uezato, “Sensorless vector control of synchronous reluctance motors with disturbance torque observer,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 402–407, Apr. 2001.
[11] G. Pellegrino, F. Cupertino, and C. Gerada, “Automatic design of synchronous reluctance motors focusing on barrier shape optimization,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1465–1474, Mar./Apr. 2015.
[12] A. Vagati, M. Pastorelli, G. Franceschini, and S. C. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 758–765, Jul./Aug. 1998.
[13] F. J. W. Barnard, W. T. Villet, and M. J. Kamper, “Hybrid active-flux and arbitrary injection position sensorless control of reluctance synchronous machines,” IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 3899–3906, Sept./Oct. 2015.
[14] W. T. Villet and M. J. Kamper, “Variable-gear EV reluctance synchronous motor drives–an evaluation of rotor structures for position-sensorless control,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5732–5740, Oct. 2014.
[15] M. Ferrari, N. Bianchi, A. Doria, and E. Fornasiero, “Design of synchronous reluctance motor for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3030–3040, Jul./Aug. 2015.
[16] I. H. Lin, M. F. Hsieh, H. F. Kuo, and M. C. Tsai, “Improved accuracy for performance evaluation of synchronous reluctance motor,” IEEE Trans. Magn., vol. 51, no. 11, Nov. 2015.
[17] N. Bianchi, M. Degano, and E. Fornasiero, “Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 187–195, Jan./Feb. 2015.
[18] C. T. Liu, B. Y. Chang, K. Y. Hung, and S. Y. Lin, “Cutting and punching impacts on laminated electromagnetic steels to the designs and operations of synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3515–3520, Jul./Aug. 2015.
[19] F. N. Isaac, A. A. Arkadan and A. El-Antably, “Characterization of axially laminated anisotropic-rotor synchronous reluctance motors,” IEEE Trans. Energy Convers., vol. 14, no. 3, pp. 506-611, Sep 1999.
[20] J. Kolehainen, “Synchronous reluctance motor with form blocked rotor,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 450-456, Jun. 2010.
[21] X. Zhang, G. H. B. Foo, D. M. Vilathgamuwa, and D. L. Maskell, “An improved robust field-weakeaning algorithm for direct-torque-controlled synchronous-reluctance-motor drives,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3255–3264, May 2015.
[22] T. Matsuo, A. El-Antably, and T. A. Lipo, “A new control strategy for optimum efficiency operation of a synchronous reluctance motor,” in Proc. IEEE Conf. Record 31st Ind. Appl., vol. 1, pp. 109–116, Oct. 1996.
[23] E. Daryabeigi, H. A. Zarchi, G. R. A. Markadeh, J. Soltani, and F. Blaabjerg, “Online MTPA control approach for synchronous reluctance motor drives based on emotional controller,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2157–2166, Apr. 2015.
[24] S. Bolognani, L. Peretti, and M. Zigliotto, “Online MTPA control strategy for DTC synchronous-reluctance-motor drives,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20–28, Jan. 2011.
[25] R. M. Caporal and M. Pacas, “A predictive torque control for the synchronous reluctance machine taking into account the magnetic cross saturation,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 1161–1167, Apr. 2007.
[26] H. A. Zarchi, J. Soltani, and G. A. Markadeh, “Adaptive input-output feedback-linearization-based torque control of synchronous reluctance motor without mechanical sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 375–384, Jan. 2010.
[27] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “ Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, 1264-1274, 2006.
[28] A. Vagati, M. Pastorelli and G. Franceschini, “High-performance control of synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 33, no. 4, pp. 983-991, Jul./Aug. 1997.
[29] A. Vagati, M. Pastorelli, G. Franceschini and V. Drogoreanu, “Fluxobserver-based high-performance control of synchronous reluctance motors by including cross saturation,” IEEE Trans. Ind. Appl., vol. 35, no. 3, pp. 597-605, May./Jun. 1999.
[30] E. M. Rashad, T. S. Radwan and M. A. Rahman, “A maximum torque per ampere vector control strategy for synchronous reluctance motors considering saturation and iron losses,” IEEE-IAS Annual Meeting, vol. 4, pp. 2411-2417, 2004.
[31] M. N. Ibrahim, P. Sergeant, S. Doki, and E. M. Rashad, “ Relevance of Including Saturation and Position Dependence in the Inductances for Accurate Dynamic Modeling and Control of SynRMs,” IEEE Trans. Ind. Appl., vol. 53, no. 1, 151-160, 2017.
[32] X. Zhang, G. H. B. Foo, D. M. Vilathgamuwa, and D. L. Maskell, “An improved robust field-weakeaning algorithm for direct-torque-controlled synchronous-reluctance-motor drives,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3255–3264, May 2015.
[33] A. M. El-Serafy, A. S. Abdallah, M. K. El-Sherbiny and E. H. Badawy,“Experimental study of the saturation and the cross magnetizing phenomenon in saturated synchronous machines,” IEEE Trans. Energy Convers., vol. 3, no. 4, pp. 815-823 , Dec. 1988.
[34] A. Vagati, M. Pastorelli, F. Scapino, and G. Franceschini, “Impact of cross saturation in synchronous reluctance motors of the transverse laminated type,” IEEE Trans. Ind. Appl., vol. 36, no. 4, pp. 1039–1046, Jul./Aug. 2000.
[35] E. M. Rashad, T. S. Radwan, and M. A. Rahman, “A maximum torque per ampere vector control strategy for synchronous reluctance motors considering saturation and iron losses,” in Proc. 39th IAS Annu. Meeting Conf. Rec. IEEE Ind. Appl. Conf., vol. 4, pp. 2411–2417, Oct. 2004.
[36] M. G. Jovanovic and R. Betz, “Maximum torque control of a sensorless synchronous reluctance motor drive,” in Proc. IEEE Ind. Appl. Soc. Conf., Annu. Meeting, vol. 1, pp. 637-644, Oct. 1997.
[37] P. Niazi, H. A. Toliyat, and Abbas Goodarzi, “IRobust maximum torque per ampere control of PM-Assisted SynRM for traction applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1538–1545, July. 2007.
[38] Y. A. I. Mohamed and Tsing K. Lee, “Adaptive self-tuning MTPA vector controller for IPMSM drive system,” IEEE Trans. Energy Convers, vol. 21, no. 3, pp. 636–644, Sep. 2006.
[39] T. Senjyu, K. Kinjo, N. Urasaki, and K. Uezato, “High efficiency control of synchronous reluctance motors using extended Kalman filter,” IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 726–731, Aug. 2003.
[40] M. Hinkkanen, P. Pescetto, E. Molsa, S. E. Saarakkala, G. Pellegrino and R. Bojoi, “Sensorless self-commissioning of synchronous reluctance motors at standstill without rotor locking,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2120–2129,May/Jun. 2017.
[41] R. E. Betz, R. Lagerquist and M. Jovanovic, “Control of synchronous reluctance machies,” IEEE Trans. Ind. Appl., vol. 29, no. 6, Nov. 1993.
[42] 陳世剛,“利用函數連結放射狀基底函數網路於適應性步階迴歸控制六相永磁同步馬達定位驅動系統”,碩士論文,國立中央大學電機系,民國一百零五年。
[43] TMS320F2807x Piccolo Microcontrollers Datasheet, Texas Instruments.
[44] 吳泰廷,“六相永磁式同步電動機驅動系統之故障後控制策略”,碩士論文,國立台灣科技大學電機系,民國九十八年。
[45] 楊凱捷,“利用遞迴式模糊類神經小腦模型網路之錯誤容忍控制六相永磁同步馬達定位驅動系統”,碩士論文,國立中央大學電機系,民國一百零三年。
[46] J. Ahn, S. B. Lim, K. C. Kim, J. Lee, J. H. Choi, S. Kim and J. P. Hong, “Field weakening control of synchronous reluctance motor for electric Power steering,” IET Elec. Power Appl., vol. 1, no. 4, pp. 565-570, Jul. 2007.
[47] S.M.Ferdous, P. Garcia, M. A. M. Oninda, and Md. A. Hoque , “MTPA and Field Weakening Control of Synchronous Reluctance Motor,” in Proc. 9th International Conference on Electrical and Computer Engineering, pp. 598-601, Dec. 2016.
[48] C. Mademlis, “Compensation of magnetic saturation in maximum torque to current vector controlled synchronous reluctance motor drives,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 379-385, Sep. 2003.
[49] X. Longya, X. Xingyi, T. A. Lipo and D. W. Novotny, “Vector control of a synchronous reluctance motor including saturation and iron loss,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 977-985, Sep.-Oct. 1991
[50] Y. Inoue, S. Morimoto, and M. Sanada, “A novel control scheme for maximum power operation of synchronous reluctance motors including maximum torque per flux control,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 115–121, Jan./Feb. 2011.
[51] R. Rajabi Moghaddam, F. Magnussen, and C. Sadarangani, “Theoretical and experimental reevaluation of synchronous reluctance machine,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 6–13, Jan. 2010.
[52] Wikipedia, Lagrange multiplier.
[53] P. V. Kokotovic, “The joy of feedback: Nonlinear and adaptive,” IEEE Control. Syst. Mag., vol. 12, pp. 7–17, Jun. 1992.
[54] M. Kristic, I. Kanellakopoulis, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, New York: Wiley, 1995.
[55] C. K. Lin, L. C. Fu, T. H. Liu, and B. H. Chou, “Passivity-based adaptive backstepping PI sliding-mode position control for synchronous reluctance motor drives,” Asian Control Conf. 8th, pp. 245-250, May 2011.
[56] R. J. Wai and H. H. Chang, “Backstepping wavelet neural network control for indirect field-oriented induction motor drive,” IEEE Trans. Neural Netw., vol. 15, no. 2, pp. 367–82, Mar. 2004.
[57] Z. Li, C. Y. Su, G. Li, and H. Su, “Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs,” IEEE Trans. Fuzzy Syst., vol. 23, no. 3, pp. 555–566, Jun. 2015.
[58] C. C. Liao, C. H. Chen, Y. F. Peng, and S. C. Wu, “A combined backstepping and wavelet neural network control approach for mechanical system,” Asian Control Conf. (ASCC) 9th, pp. 1–6, Jun. 2013.
[59] D. Mayne, “Nonlinear and Adaptive Control Design-M. Kristic, I. Kanellakopoulis, and P. V. Kokotovic (New York: Wiley, 1995),” IEEE Trans. Autom. Control, vol. 41, no. 12, pp. 1849–1853, Dec.1996. (Book Review).
[60] J. Linares-Flores, C. García-Rodríguez, H. Sira-Ramírez, and O. D. Ramírez-Cárdenas, “Robust backstepping tracking controller for low-speed PMSM positioning system: design, analysis, and implementation, ” IEEE Trans. Ind. Informat., vol. 11, no. 5, pp. 1130–1141, Oct. 2015.
[61] 許效豪,“無轉軸偵測元件同步磁阻電動機直接轉矩控制驅動系統之研究”,碩士論文,國立臺灣科技大學電機工程系,民國九十四年。
[62] J. A. Primbs, V. Nevistic, and J. C. Doyle, “Nonlinear optimal control: a control Lyapunov function and receding horizon perspective,” Asian J. Control, vol. 1, no. 1, pp. 14–24, Mar. 1999.
[63] C. C. Yang, “Robust adaptive terminal sliding mode synchronized control for a class of non-autonomous chaotic systems,” Asian J. Control, vol. 15, no. 6, pp. 1677–1685, Nov. 2013. 
[64] 鍾孟翰,“具編碼器回授之同步磁阻馬達驅動器研製”,碩士論文,國立台北科技大學電機工程系,民國一百零四年。
指導教授 林法正(Faa-Jeng Lin) 審核日期 2017-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明