博碩士論文 103323108 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:18.191.222.143
姓名 蔣宇(Yu Chiang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用液相剝離法合成黑磷烯及其表面物化性質分析
(Synthesis and surface physical and chemical characterizations of phosphorene by liquid phase exfoliation)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究★ 石墨烯之複合電極於全固態纖維式微型超電容的研究
★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究
★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究
★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性
★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容★ 懸空石墨烯之特性研究與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 黑磷為磷的眾多同素異型體中,在熱力學上最為穩定的一種,其獨特的二維片層結構,使它有許多優異的特性,在其二維的多層晶體結構中,如同石墨烯,片層與片層之間以凡得瓦力鍵結。早期研究中以機械剝離法可以輕易地撕下奈米級片層,而少層的黑磷稱為黑磷烯。黑磷烯在不同層數的狀態下,其能隙也隨之不同,且為直接能隙,在能隙的可調控範圍大於現今任何已被確認的過渡金屬二硫化物。同時,應用於電子元件時,其電流開關比(on-off ratio)可達到105等級,且載子遷移率可達到~ 1000 cm2/Vs,兩者皆是作為邏輯元件時所需要的優異特性,在二維材料中,期待能替代矽做為新的半導體通道材料。然而,過去研究中發現黑磷在大氣下易發生氧化,少層的黑磷烯尤其明顯,這將導致其本質的電傳輸性質劣化。如何在保護黑磷不受氧化的前提下,同時保有原來在電性上優異的性質,為一重要課題。此外,目前可量化合成黑磷烯的製程仍少被研究,其材料特性也還在研究階段。
本研究探討利用液相剝離法產生少層黑磷烯,並分析其材料性質並測試穩定性。研究中使用不同的溶劑作為介質,其中1% SDS溶於去氧水之溶劑,可以獲得高的剝解產率,片層厚度之分布約為6 nm,均一性也較其他溶劑高。此外,利用石墨烯的優異阻水氧性質,製備黑磷烯與石墨烯分散溶液,使石墨烯包覆黑磷烯片層,可以減緩黑磷烯的快速劣化。因此,可藉由優化此合成方法獲得量產且高品質的黑磷烯。本研究也展示黑磷烯組裝成連續薄膜的方法,可使黑磷烯薄膜表面維持本質態,可在60天內達到保護黑磷不受氧化的影響。同時,將少層黑磷烯組成大面積之連續薄膜的製程也利於黑磷烯於未來之元件應用。
摘要(英)
Black phosphorus is one of the most stable allotropes of phosphorus, and its unique two-dimensional lamellar structure makes it have many excellent properties. The two-dimensional multilayer crystal structure of black phosphorus is similar to graphene, and the lamellar layer is bonded to each other by Van der Waals bonding. In early research, it is easy to tear off the nano-level black phosphorus by mechanical exfoliation process and the nano-level black phosphorus is called phosphorene. The band gap of phosphorene changes because of different numbers of its layers, and the adjustable range of band gap is greater than any of today’s transitional metal disulfide. Meanwhile, phosphorene is applied to electronic components with a high on-off ratio of 105, and carrier mobility of ~ 1000 cm2/Vs, both of which are excellent features required as logic devices. Phosphorene is a remarkable and novel two-dimensional material expected to replace silicon as the transporting channel of the semiconducting device.
However, in the past studies, black phosphorus was prone to be oxidized easily in the atmosphere and this phenomenon was obviously observed on the few layers phosphorene, which results in deterioration of its intrinsic electrical transport properties. How to protect the black phosphorus without oxidation and maintain the excellently electrical property is an important issue. In addition, the process to quantify the synthesis of phosphorene is few to be researched, while the material properties are still at the researching stage.
In this study, we obtained phosphorene by liquid phase exfoliation, and analyzed its material properties and stability. We used different solvents as exfoliation medium, and found that 1% sodium dodecyl sulfate (SDS) dissolved in deoxygenated water solvent can get a high productivity. The thickness of few layered phosphorene is about 6 nm. The uniformity in thickness of exfoliated phosphorene with SDS solvent is better than it with other solvents.
In addition, the deterioration rate of phosphorene could be restrained by encapsulating electrochemical graphene with its excellent resistance of water and oxygen. The solution was prepared by mixing the solution with dimethylformamide (DMF) as the dispersion of phosphorene and graphene. Therefore, high quality phosphorene can be obtained by optimizing this synthesis method, the production of. Our study also demonstrates a process for the assembly of the phosphorene into a continuous film which is effective in retarding the oxidation of the phosphorene. The surface of the phosphorene film can maintain the intrinsic state, so that phosphorene can be protected within 60 days from the impact of oxidation. It is attractive and has benefit to form the continuous and large area film with a few layers of phosphorene for the applications of electrical devices in the future.
關鍵字(中) ★ 黑磷烯
★ 液相剝離法
關鍵字(英) ★ phosphorene
★ liquid phase exfoliation
論文目次
總目錄
摘要 I
英文摘要 II
致謝 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
第二章 研究背景與文獻回顧 5
2-1 黑磷的合成方法 5
2-2 黑磷烯的製程與機制 6
2-2-1 機械剝離法 (Mechanical Exfoliation) 6
2-2-2 液相剝離法 (Liquid Phase Exfoliation) 7
2-3 黑磷烯的組裝薄膜 13
2-4 黑磷烯的氧化 14
2-5 黑磷烯的光學特性 21
2-6 黑磷烯之薄膜電晶體 24
2-7 研究動機 25
第三章 實驗方法與步驟 26
3-1 實驗架構 26
3-2 黑磷烯溶液製備 27
3-3 黑磷烯薄膜製作 30
3-3-1 真空過濾法 30
3-3-2 轉印步驟 30
3-4 氧化保護 32
3-5 材料特性分析 32
3-5-1 表面形貌分析 32
3-5-2 材料厚度分析 33
3-5-3 結晶結構分析 34
第四章 結果與討論 35
4-1 材料特性分析 35
4-1-1 表面形貌分析 35
4-1-2 材料厚度與層數分析 47
4-1-3 拉曼光譜分析 52
4-1-4 霍式轉換紅外線光譜分析 59
4-2 綜合本研究方法與過去研究之分析討論 61
第五章 結論 62
參考文獻 63
參考文獻

[1] Geim, A.K. and Grigorieva, I.V. (2013) ‘Van der Waals heterostructures’, Nature, 499(7459), pp. 419–425.
[2] Geim, A.K. and Novoselov, K.S. (2007) ‘The rise of graphene: Abstract: Nature materials’, Nature Materials, 6(3), pp. 183–191.
[3] Li, L. (2014) ‘Black phosphorus field-effect transistors’, Nature Nanotechnology, 9(5), pp. 372–377.
[4] Eswaraiah, V. (2016) ‘Black phosphorus Nanosheets: Synthesis, characteriztion and applications’, Small, 12(26), pp. 3480–3502.
[5] Chen, Y. (2015) ‘Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation’, Optics Express, 23(10), p. 12823.
[6] Bridgman, P.W. (1914) ‘TWO NEW MODIFICATIONS OF PHOSPHORUS’, Journal of the American Chemical Society, 36(7), pp. 1344–1363.
[7] Lange, S. (2007) ‘Au3SnP7@Black phosphorus: An easy access to black phosphorus’, ChemInform, 38(30).
[8] Krebs, H. (1955). ‘Über die Struktur und die Eigenschaften der Halbmetalle. X. Die Allotropie des Arsens’, Anorg. Allg.Chem.1(6),pp. 263–276.
[9] Brown, A. (1965) ‘Refinement of the crystal structure of black phosphorus’, Acta Crystallographica, 19(4), pp. 684–685.
[10] Eda, G. (2008) ‘Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material’, Nature Nanotechnology, 3(5), pp. 270–274.
[11] Yasaei, P. (2015) ‘High-quality black phosphorus atomic layers by liquid-phase Exfoliation’, Advanced Materials, 27(11), pp. 1887–1892.
[12] Kang, J. (2016) ‘Stable aqueous dispersions of optically and electronically active phosphorene’, Proceedings of the National Academy of Sciences, 113(42), pp. 11688–11693.
[13] J. Coleman. (2011) ‘Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials.’ , ChemInform, 42(18), pp. 568–571,.
[14] A. O’Neill. (2011) ‘Graphene Dispersion and Exfoliation in Low Boiling Point Solvents’, The Journal of Physical Chemistry C, 115(13), pp. 5422–5428.
[15] Kang, J. (2015) ‘Solvent Exfoliation of electronic-grade, Two-Dimensional black phosphorus’, ACS Nano, 9(4), pp. 3596–3604.
[16] Zhang, X. (2015) ‘Black phosphorus quantum dots’, Angewandte Chemie, 127(12), pp. 3724–3728.
[17] Hanlon, D. (2015) ‘Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics’, Nature Communications, 6, p. 8563.
[18] Eda, G. (2008) ‘Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material’, Nature Nanotechnology, 3(5), pp. 270–274.
[19] Favron, A. (2015) ‘Photooxidation and quantum confinement effects in exfoliated black phosphorus’, Nature Materials, 14(8), pp. 826–832.
[20] K. Kuntz. (2017) ‘Control of Surface and Edge Oxidation on Phosphorene’, ACS Applied Materials & Interfaces, 9(12), pp. 9126–9135.
[21] T. Yang. (2015) "Interpreting core-level spectra of oxidizing phosphorene: Theory and experiment", Physical Review B, 92(12),pp.125412
[22] Castellanos-Gomez, A. (2014) ‘Isolation and characterization of few-layer black phosphorus’, 2D Materials, 1(2), p. 025001.
[23] Wood, J.D. (2014) ‘Effective Passivation of Exfoliated black phosphorus transistors against Ambient degradation’, Nano Letters, 14(12), pp. 6964–6970.
[24] Castellanos-Gomez, A. (2015) ‘Black phosphorus: Narrow gap, wide applications’, The Journal of Physical Chemistry Letters, 6(21), pp. 4280–4291.
[25] Oostinga, J.B. (2007) ‘Gate-induced insulating state in bilayer graphene devices’, Nature Materials, 7(2), pp. 151–157.
[26] Liu, H. (2014) ‘Phosphorene: An unexplored 2D semiconductor with a high hole mobility’, ACS Nano, 8(4), pp. 4033–4041.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2017-6-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明