博碩士論文 103323018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.135.195.168
姓名 莊東叡(Tung-Jui Chuang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 修整型球面漸開線螺旋傘齒輪受載齒面接觸分析
相關論文
★ LED封裝點膠系統創新設計之研究★ 夾治具概念設計方法之研究
★ 葡萄糖檢測電極基材之化銅電鍍鎳金製程開發研究★ 印刷電路板蝕刻製程設計與可視化驗證實驗
★ 平行軸錐形齒輪齒根應力特性之研究★ 漸開線直齒錐形齒輪齒根應力之量測與分析
★ 單軸押出機減速機系列產品之計算機輔助開發模式之研究★ 漸開線直齒錐形齒輪齒根應力計算模型之初步研究
★ 非旋轉式表面電漿儀之創新設計與製作★ 電腦輔助單軸押出機減速機系列產品之開發
★ 單軸押出機減速機箱體系列化發展模式之研究★ 電腦輔助機械零件製造成本預估 – 以單軸押出機減速機為例
★ 直齒錐形齒輪齒根應力解析計算模式之研究★ 具點接觸型態之歪斜軸錐形齒輪對齒面疲勞破壞之初步研究
★ 粉末冶金齒輪齒根疲勞強度之研究★ 電腦輔助設計程式模組之建構-以齒輪減速機為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 螺旋傘齒輪因具有較高的接觸率、較高的齒面承載能力以及平順傳動性能,為常應用在具有軸交角的機械傳動元件。而使用粉末冶金模造法進行加工的螺旋傘齒輪,則可以具有大量生產、低成本的優點,符合各種中、小型傳動設備的使用需求,如電動、園藝等傳動齒輪箱。
本研究之目的,係針對應用粉末冶金製造方式的螺旋傘齒輪,提出一套完整的受載齒面分析方法,以能分析所設計的修整型齒輪,以了解組裝誤差以及偏心誤差對於接觸過程以及傳動誤差的影響,以及齒輪對在嚙合過程的負載特性。
為了避免螺旋傘齒輪脫模時產生干涉現象,在本論文中螺旋傘齒輪齒面使用球面漸開線齒廓沿軸線等角度旋轉方式產生,並對小齒輪齒面進行雙隆起修整,以改善接觸狀況。在文中亦發展出螺旋傘齒輪脫模的分析模式,以確保是否可以脫模,並能決定所對應合適的脫模旋轉角度。
本論文根據球面漸開線之法線幾何特性發展出無負載狀態下的齒面接觸分析模型,可簡化齒面嚙合接觸點位置之求解。此方法同樣適用於具組裝誤差與偏心誤差狀況下的螺旋傘齒輪對之接觸特性,即接觸點在齒面位置之變化以及傳動誤差。
同時發展齒輪對嚙合之受載齒面接觸分析模式,係使用影響係數法為基礎,將齒面接觸、齒面彎曲、軸彎曲以及軸扭轉等變形影響同時納入,以得到嚙合齒對受載應力分佈、受載傳動誤差以及負載分配結果。
本論文中設計出一組螺旋傘齒輪對,其設計符合業者之設計要求,供割草機使用,並經分析確認可脫模。再以無負載齒面接觸分析,探討各主要組裝誤差的影響,分析結果發現偏位誤差最為敏感,其次為小齒輪軸向誤差與大齒輪軸向誤差,而角度誤差對於接觸點幾乎不影響。此螺旋傘齒輪對之傳動誤差曲線近似拋物線,不同的組裝誤差對此影響不大;而齒輪偏心量的傳動誤差是由單一齒對之拋物線型傳動誤差曲線所組合成的類似正弦變化曲線,且整體振幅遠大於單一齒對拋物線曲線振幅。
使用本論文發展之受載齒面接觸分析模型分析所設計螺旋傘齒輪,結果發現組裝誤差量過大時,接觸開始以及結束位置仍會產生輕微邊緣應力接觸;而組裝誤差主要影響接觸齒對起點與終點的角度,對於受載傳動誤差曲線影響較低。同時在本論文中也探討因為使用懸臂樑支撐,螺旋傘齒輪在左、右齒面接觸狀況下的接觸斑差異,分析結果顯示在合適的修整下,齒輪左、右齒面的接觸特性差異可降到最小。
摘要(英)
Spiral bevel gears which have high contact ratio, high load capacity, and smooth transmission are usually used on augular transmission. the powder metallurgy modify spiral bevel gears , are cheap and can be mass-produced, suitalbe for small and medium sized equipment, like electrical tools and gardening tools.
The purpose of this study is designing powder metallurgy modify spiral bevel gear and building analysis method for it,so the influences of assembly errors, the influences eccentric errors and the load characteristics in contact process can be confirmed.
To avoid interference happen between gear and model, the spiral bevel gear is desgin by axis-rotating spherical involute. The pinion is modified to improve the contact stress. Also, developing the mold stripping anaylsis method can find the mold stripping angle.
The tooth contact anaylsis (TCA) of spiral spherical involute bevel gear, is based on characteristics of normal vectors, can simplify the solving procedure. This method can ues on the gear pair with assemble errors and eccentric errors, finds contact variety on tooth surface and transmission error.
The load tooth contact analysis (LTCA) is based on influnce coefficinet method, included tooth contact, tooth bending, shaft bending, and shaft twist, to determine tooth contact stree, load transmission error, and load sharing.
In this study, a spiral bevel gear pair is desgined by the requirement of cooperation vendor, and confirm it can strip. In addition, the gear pairs use TCA to find the influences of assembly errors. The result show the contact position of the tooth pair due to the offer errors caues is the most sensitive, the next is due to mounting distance of the gear and the pinion. The shaft angles error slightly affects the conatact position. The curve of transmission error is parabolic curve, even gear pairs have assembly errors. But the curve of transmission error of the tooth pair wiht eccentric error is similar to sine curve combined by parabolic curves. The amplitude of sine curve is greater than the amplitude single parabolic curve.
The LTCA result of gear pairs show that large assembly errors cause concentrated contact stress still occurs nearby the contcat begin position and the conatcat end position. The assembly errors sightly affect the LTE curve, and affect the contact begin angle and the contact end angle. Because of the gear pairs support by cantilever beam , the contact stress on right tooth side need to compare with left tooth side. The result show that the appropriate modify make the contact stress on both side almost same.
關鍵字(中) ★ 螺旋傘齒輪
★ 球面漸開線傘齒輪
★ 齒面修整
★ 組裝誤差分析
★ 受載齒面接觸分析
★ 受載傳動誤差分析
關鍵字(英) ★ spiral bevel gear
★ tooth modify
★ assembley error analysis
★ load tooth cotact analysis
★ load transmission error
論文目次
摘要 i
Abstract iii
謝誌 v
目錄 vi
圖目錄 x
表目錄 xvii
符號說明 xviii
第 1 章 前言 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 齒面幾何與修整 3
1.2.2 齒面接觸分析 4
1.2.3 受載齒面接觸分析模型 5
1.3 研究目的 7
1.4 論文架構 7
第 2 章 修整型螺旋傘齒輪幾何設計 9
2.1 球面漸開線齒廓設計 9
2.1.1 球面漸開線齒廓方程式 9
2.1.2 齒根圓角方程式 10
2.2 無修整螺旋傘齒輪數學模型 16
2.2.1 螺旋傘齒輪基本幾何 16
2.2.2 輪齒幾何關係 24
2.2.3 球面漸開線螺旋傘齒輪齒面 29
2.3 螺旋傘齒輪齒面修整 31
2.3.1 作用面上接觸點路徑規劃 31
2.3.2 齒線修整 38
2.3.3 齒形修整 41
2.3.4 螺旋傘齒輪修整齒面方程式 42
2.4 螺旋傘齒輪脫模分析 46
第 3 章 修整型螺旋傘齒輪齒面接觸分析 51
3.1 齒面軸線關係 51
3.1.1 螺旋傘齒輪對理論組裝關係 51
3.1.2 組裝誤差 52
3.1.3 偏心誤差 53
3.1.4 誤差下的組裝座標轉換 55
3.2 接觸點計算 56
3.2.1 螺旋傘齒輪齒面法向量特性 57
3.2.2 接觸條件式 60
3.2.3 接觸率 62
3.2.4 傳動誤差 63
第 4 章 螺旋傘齒輪對受載齒面接觸分析 65
4.1 齒輪對受負載接觸計算模型 65
4.1.1 單齒對接觸模型 65
4.1.2 多齒對接觸模型 69
4.1.3 齒對受載接觸特性 69
4.2 影響係數建立 71
4.2.1 接觸變形影響係數 71
4.2.2 輪齒彎曲/剪切變形影響係數 72
4.2.3 軸變形影響係數 80
4.2.4 軸扭轉變形係數 83
4.3 齒面間距求解 85
4.3.1 切平面座標轉換 86
4.3.2 間距計算 88
4.3.3 齒面有效嚙合區域定義 88
第 5 章 螺旋傘齒輪分析案例 90
5.1 分析案例介紹 90
5.2 齒線修整參數影響 92
5.2.1 形狀係數SF 92
5.2.2 對稱係數Se 93
5.2.3 比例係數Sc 94
5.2.4 修整參數選定 95
5.3 齒形修整參數影響 96
5.3.1 齒形係數Sp 96
5.3.2 齒頂係數bt 97
5.3.3 齒根係數br 99
5.3.4 修整參數選定 100
5.4 小齒輪工作齒面修整 102
5.5 齒輪對模具脫模分析 102
5.6 偏心誤差影響量 103
第 6 章 齒對嚙合接觸分析結果 105
6.1 理想組裝下齒對接觸點軌跡 105
6.2 偏位誤差下齒對接觸點軌跡 106
6.3 大齒輪軸向誤差下齒對接觸點軌跡 107
6.4 小齒輪軸向誤差下齒對接觸點軌跡 108
6.5 角度誤差下齒對接觸點軌跡 110
6.6 綜合組裝誤差下齒對接觸點軌跡 111
第 7 章 齒面受載分析結果 113
7.1 理想組裝下嚙合齒面受載分析 113
7.1.1 嚙合過程之接觸斑變化 113
7.1.2 嚙合過程之應力變化 114
7.1.3 嚙合過程之負載分配 115
7.2 組裝誤差下的齒面受載分析 116
7.2.1 嚙合過程之接觸斑變化 116
7.2.2 嚙合過程之應力變化 124
7.2.3 嚙合過程之負載分配 128
第 8 章 傳動誤差分析結果 132
8.1 無負載下的傳動誤差 132
8.1.1 理想組裝情況的傳動誤差 132
8.1.2 偏位誤差的傳動誤差 133
8.1.3 大齒輪軸向誤差的傳動誤差 134
8.1.4 小齒輪軸向誤差的傳動誤差 134
8.1.5 角度誤差的傳動誤差 135
8.1.6 大齒輪偏心誤差下的傳動誤差 135
8.1.7 小齒輪偏心誤差下的傳動誤差 136
8.1.8 綜合組裝誤差 137
8.2 受載傳動誤差 137
8.2.1 理想組裝 137
8.2.2 偏位誤差 138
8.2.3 大齒輪軸向誤差 139
8.2.4 小齒輪軸向誤差 141
8.2.5 角度誤差 142
第 9 章 不同工作齒腹側之接觸特性分析比較 144
9.1 嚙合過程接觸斑變化 144
9.2 嚙合過程比較 145
9.3 軸變形影響 150
9.4 傳動誤差 152
第 10 章 結論與未來展望 153
10.1 結論 153
10.2 未來展望 155
參考文獻 157
附錄A 球面漸開線座標轉換 162
附錄B 球面上圓相切關係 163
附錄C 嚙合過程接觸斑應力分佈 164
參考文獻
[1] Radzevich, S. P., “Dudley’s Handbook of prcatical gear design and manufacture,” 2nd edition, CRC Press, 2012.
[2] South, David W., “Encyclopedic Dictionary of Gears and Gearing,” McGraw-Hill, 1995.
[3] Litvin, F. L., Fuentes, A., and Hayasaka, K., “Design, manufacture, stress analysis, and experimental tests of low-noise high endurance spiral bevel gears,” Mechanism and Machine Theory, Vol. 41(1), pp. 83-118, 2006.
[4] Fan, Q., “Computerized modeling and simulation of spiral bevel and hypoid gears manufactured by gleason face hobbing process,” Journal of Mechanical Design Transactions of the ASME, Vol. 128(6), pp. 1315-1327, 2006.
[5] Cao, X.-M., Fang, Z.-D., and Zhang, J.-L., “Analysis and design of the pinion machine settings for spiral bevel gears,” 12th IFToMM World Cngress, Besançon (France), June18-21, 2007.
[6] Shih, Y.-P., and Fong, Z.-H., “Flank correction for spiral bevel and hypoid gears on a six-axis CNC hypoid generator,” Journal of Mechanical Design Transactions of the ASME, Vol. 130(6). Pp.431-440, 2008.
[7] Fong, Z.H., and Tsay, C.B., “A Mathematical model for the tooth geometry of circular-cut spiral bevel gears,” Journal of Mechanical Design Transactions of the ASME, Vol. 113(2), pp. 174-181, 1991.
[8] Artoni, A., Gabiccini, M., and Guiggiani, M., “Nonlinear identification of machine settings for flank form modifications in hypoid gears,” Journal of Mechanical Design Transactions of the ASME, Vol. 130(11), 112602, 2008.
[9] 郭修明,“圓弧齒廓傘齒輪之研究",國立中山大學機械工程研究所,1991。
[10] Alves, J. T., Guingand, M., and de Vaujany, J.-P., “Designing and manufacturing spiral bevel gears using 5-axis computer numerical control (CNC) milling machines,” Journal of Mechanical Design Transactions of the ASME, Vol. 135(2), 024502, 2013.
[11] Zhang, X. C., Wang, X., Yu, L. J., and Yang, Z. J., “Study on the generation of spiral bevel gears with spherical involute tooth profile by the tracing line,” Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, Vol. 226, pp. 1097-1105, 2011.
[12] Tsai, Y.-C., and Chin, P.-C., “Surface geometry of straight and spiral bevel gears,” Journal of Mechanisms, Vol. 109(4), pp. 443-449, 1987.
[13] Schaaf, J.A., and Yang, A. T., “Kinematic geometry of spherical evolutes,” Journal of Mechanical Design Transactions of the ASME, Vol. 114(1), pp. 109-116, 1992.
[14] Lee, H.W., Lee, K.O., and Chung, D.H., “A Kinematic investigation of a spherical involute bevel-geared system,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 224, pp. 1335-1348, 2010
[15] Al-Daccak, M. J., Angels, J. and Gonzles-Palacios, M. A., “The modeling of bevel gears using the exact spherical involute,” Journal of Mechanical Design Transactions of the ASME, Vol.116(2), pp. 364-368, 1994.
[16] Figliolini, G, and Angeles, J., “Algorithms for involutes and octoidal bevel-gear generation,” Journal of Mechanical Design Transactions of the ASME, Vol. 127(4), pp. 664-672, 2005.
[17] 劉育豪,“球面漸開線直傘齒輪修整設計、分析與疲勞測試”,國立中央大學碩士論文,2014。
[18] 李哲仰,“修整型球面漸開線直傘齒輪對受軸變形與誤差影響之齒面接觸分析”,國立中央大學,碩士論文,2017。
[19] 林旻鴻,“小齒數比錐形齒輪對修整設計、分析與疲勞測試”,國立中央大學碩士論文,2014。
[20] 蔡明芳,“模造齒輪齒型設計與修整之研究”,國立中正大學博士論文,2007。
[21] Litvin, F.L., and Fuentes, A., “Gear geometry and applied theory,” 2nd edition, Cambridge University Press, NJ, 2004.
[22] Artoni ,A., Bracci, A., Gabiccini, M., and Guiggiani, M., “Optimization of the loaded contact pattern in hypoid gears by automatic topography modification,” Journal of Mechanical Design Transactions of the ASME, Vol. 131(1), 011008, 2009.
[23] Simon, V., “Optimal machine tool setting for hypoid gears improving load distribution,” Journal of Mechanical Design Transactions of the ASME, Vol.123(4), pp. 577-582, 2001.
[24] Nishino, T., “Computerized modeling and loaded tooth contact analysis of hypoid gears manufactured by face hobbing process,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.3, No.3, 2009.
[25] 吳思漢,“似線接觸型態之歪斜軸漸開線錐形齒輪對齒面接觸強度之研究”,國立中央大學博士論文,2009。
[26] Artoni, A., Gabiccini, M., and Guiggiani, M., “Ease-off based compensation of tooth surface deviation for spiral bevel and hypoid gears: Only the pinion needs corrections,” Mechanism and Machine Theory, Vol.61, pp. 84-101, 2013.
[27] Yu, W., Mechefske, C.K., and Timusk, M., “The dynamic coupling behavior of a cylindrical geared rotor system subjected to gear eccentricities,” Mechanism and Machine Theory, Vol.107, pp. 105-122, 2017.
[28] Johnson, K.L., “Contact mechanics,” Cambridge University Press, Cambridge, 1987.
[29] Simon, V., “FEM Stress analysis in hypoid gears,” Mechanism and Machine Theory, Vol.35, pp. 1197-1220, 2000.
[30] Simon, V., Fuentes A., and Hayasaka K., “Load distrubution in hypoid gears,” Journal of Mechanical Design Transactions of the ASME, Vol.122(4), pp. 529-535, 2000.
[31] Simon, V., “Influence of tooth errors and misalignments on tooth contact in spiral bevel gears,” 12th IFToMM World Cngress, Besançon (France), June18-21, 2007.
[32] ASNI/AGMA ISO 23509-A08, Bevel and Hypoid Gear Geometry, 2006.
[33] ASNI/AGMA 2005-D03, Deaign Manual for Bevel Gears, 2008.
[34] ASNI/AGMA ISO 17485-A08, Bevel Gears – ISO System of Accuracy, 2008.
[35] ANSI/AGMA 6008-A98, Specifications for Power Metallurgy Gears, 2004.
[36] Veldkamp, G. R., “On the use of dual numbers, vectors, and matrices in instantaneous spatial kinematics,” Mechanism and Machine Theory, Vol. 11, pp. 141-156, 1976.
[37] Xiao, D.Z., and Yang, A.T., “Kinematics of three dimensional gearing,” Mechanism And Machine Theory, Vol. 24(4), pp. 245-255, 1989.
[38] Fischer, I.S., “Dual-number method in kinematic, statics and dymatics,” CRC Press, 1999.
[39] 王燮山,“用奇異函數法求解某些變截面樑的變形”,力學與實踐,Vol.6,pp. 53-55,1984。
指導教授 蔡錫錚(Shyi-Jeng Tsai) 審核日期 2017-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明