博碩士論文 983403014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:3.14.250.221
姓名 蔣龍杰(Jiang Long Jie)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高壓預混紊流燃燒: 最小引燃能量與紊流燃燒速度量測
(HIGH-PRESSURE PREMIXED TURBULENT COMBUSTION: MEASUREMENTS OF MINIMUM IGNITION ENERGY AND TURBULENT BURNING VELOCITIES)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文之研究是為了更進一步瞭解紊流預混燃燒引燃能量及紊流火焰速度,藉此提供工業意外爆炸依據和航空安全評估,並且促進以火花引燃燃燒之交通運輸工具發展。本論文著重於兩部份基礎研究:(1)高壓條件最小引燃能量(minimum ignition energy, MIE)之量測和(2)高溫高壓紊流預混火焰速度之相關性等二部份。此二者研究乃使用本實驗室已建立之大型高壓高溫雙腔體設計之十字型預混紊流燃燒器。第一部份是以貧油甲烷/空氣(當量比ϕ = 0.6)為預混燃氣,在1至5倍的大氣壓力條件下,使用圓柱平頭火花電極置於測試區中央處,以高電壓脈衝產生器定量控制火花放電電極之引燃能量,量測不同紊流強度(u′/SL = 0 ~ 50)條件下之MIE,SL是層流燃燒速度。藉由火花放電過程所量測之近似方波電壓和電流數據,用以精確的計算引燃能量,並且定義出50%的引燃機率。我們也利用高速Schlieren紋影顯像技術觀測高壓紊流火核影像,我們觀測到即便壓力在5倍大氣壓力下,當u′/SL大於某臨界值(u′/SL)c時,火核發展的形態仍會從紊流薄碎焰極急劇地改變成類似散佈狀火焰,並且伴隨有島塊焰的形成和局部火焰熄滅的現象。實驗結果顯示,MIET/MIEL會先隨正規化紊流強度u′/SL之增加而呈線性增加,但是當u′/SL大於某臨界值(u′/SL)c時會呈現指數型驟升之變化,此為引燃轉折,其中下標T和L分別代表層流與紊流時之值。當MIEL ≈ 6.84 mJ (1atm)、2.81 (3 atm)和2.11 (5atm),引燃轉折分別發生在(u′/SL)c ≈ 12 (1atm)、 24 (3 atm)和34 (5 atm)。實驗結果也顯示,對於不同壓力和紊流強度下之MIET/MIEL數值,我們可以藉由壓力修正係數方式,修正火核反應區引燃轉折模式Péclet number,使之以Pe* 關係式整合在一曲線擬合上,經修正後的曲線關係式為Pe* = PeRZ(p/p0)-1/4,當Pe* ≈ 3.6時為引燃轉折發生之處。其中PeRZ = u′ηk/αRZ,即火核之紊流與化學反應間擴散強弱之指標,ηk為Kolmogorov紊流長度尺度,αRZ為反應區熱擴散係數,p0 = 1 atm。這些結果顯示自我相似性火花引燃現象。
第二部份是以Le = 1(當量比ϕ=0.9)之甲烷/空氣為預混燃氣,在高溫高壓條件下量測紊流火焰速度,並且瞭解及比較紊流火焰速度之間的相似性。高溫的實驗是在十字型燃燒器腔體外及兩片空孔板上安裝新型加熱器進行加熱,並且透過調整加熱的方式確保實驗中心區域的溫度差異小於1 oC。火焰傳播速率d/dt和SF(平均半徑的斜率)是經由球形擴張紊流火焰的Schlieren影像進行統計及計算平均火焰半徑而獲得,在此SF是d/dt對時間之平均值,當25 mm ≤ ≤ 45 mm。結果顯示,正規化紊流火焰傳播速率(SLb)-1d/dt與火焰紊流雷諾數ReT,flame = (u′/SL)(/δL)大約呈現1/2冪次關係,在溫度300 K時(SLb)-1d/dt ≈ (SLb)-1SF = 0.116ReT,flame0.54,在溫度423 K時為0.168ReT,flame0.46,在此u′是方均根紊流擾動速度,SL和SLb分別是層流燃燒速度和未作密度校正之層流燃燒速度,δL是層流火焰厚度。前者,300 K條件下所獲得的結果與Chaudhuri et al. (2012)的結果趨近一致。但是後者顯示,423 K條件下在高雷諾數(ReT,flame)時(SLb)-1d/dt會有向下彎折的現象。利用密度修正和Bradley’s所提的平均傳遞變數進行計算,在=0.5處,可以得到球狀紊流火焰速度ST,c=0.5 ≈ (ρb/ρu)SF(c=0.1/c=0.5)2。此外,在不同溫度條件下所獲得之散佈球狀火焰之數據相較於Kobayashi之Bunsen火焰,可用ST,c=0.5/SL = 2.9[(u′/SL)(p/p0)]0.38此關係式有更佳的呈現。再者,這些散佈球狀焰之數據也可被聚合成一曲線關係(ST,c=0.5-SL)/u′ = 0.16Da0.39 其Da = (LI/ u′)(SL/δL)為紊流Damköhler數,LI是積分長度尺度。
摘要(英)
This thesis includes two parts, (1) the measurement and scaling of high-pressure minimum ignition energies (MIE) and (2) the correlation of high-temperature/pressure turbulent burning velocities in premixed turbulent combustion. All experiments were conducted in a large dual-chamber, constant-pressure/temperature, fan-stirred 3D cruciform bomb capable of generating near-isotropic turbulence. In the first part of the study, the high-pressure MIE was measured from spark discharges in lean methane/air mixtures at the equivalence ratio ϕ = 0.6 using a pair of 2-mm cylindrical electrodes with flat ends over a wild range of turbulent intensities (u′/SL = 0~ 50), from 1 to 5 atm, where SL is the laminar burning velocity. Voltage and current waveforms of spark discharges with nearly square profiles were carefully generated for accurate determination of MIE, commonly defined as the 50% successful ignitability. Applying high-speed schlieren imaging, we observed a drastic change of kernel development from turbulent flamelet to distributed like with island formation and local quench even at 5 atm, where u′/SL greater than some critical values depending on p. It is found that the scaling slopes of MIET/MIEL versus u′/SL change abruptly from a linear increase to an exponential increase when u′/SL > (u′/SL)c, showing ignition transition. The subscripts T and L represent turbulent and laminar properties, MIEL ≈ 6.84 mJ (1atm), 2.81 (3 atm), and 2.11 (5atm), and the transition occurs at (u′/SL)c ≈ 12 (1atm), 24 (3 atm), and 34 (5 atm). It is also found that above scattering MIET/MIEL data at different u′/SL and p can be merged together into a single curve when scaled with a pressure-corrected kernel (reaction zone, RZ) Péclet number, Pe* = PeRZ(p/p0)-1/4, showing the first and fourth power dependence before and after MIE transition at a critical Pe* ≈ 3.6. PeRZ = u′ηk/αRZ, ηk is the Kolmogorov length scale of turbulence, αRZ is the thermal diffusivity estimated at the instant of kernel formation, and p0 = 1 atm. These results reveal a self-similar spark ignition phenomenon.
The second part of the study, the high-temperature, high-pressure turbulent burning velocities and their correlation of expanding methane/air turbulent flames was reports at unity-Lewis-number. A novel heating method was used to ensure that the temperature variation in the domain of experimentation was less than 1℃. Schlieren images of statistically spherical expanding turbulent flames were recorded to evaluate the mean flame radius and the observed flame speeds, d/dt and SF (the slope of ), where SF is found to be equal to the average value of d/dt within 25 mm ≤ ≤ 45 mm. Results show that the normalized turbulent flame speed scales as a turbulent flame Reynolds number ReT,flame = (u′/SL)(/δL) roughly to the one-half power: (SLb)-1d/dt ≈ (SLb)-1SF = 0.116ReT,flame0.54 at 300 K and 0.168ReT,flame0.46 at 423 K, where SL and SLb are laminar flame speeds with respect to the unburned and burned gas, and δL is the laminar flame thickness. The former at 300 K agrees well with Chaudhuri et al. (2012) except that the present pre-factor of 0.116 and ReT,flame up to 10,000 are respectively 14% and four-fold higher. But the latter at 423 K shows that values of (SLb)-1d/dt bend down at larger ReT,flame. Using the density correction and Bradley’s mean progress variable converting factor for Schlieren spherical flames, the turbulent burning velocity at =0.5, ST,c=0.5 ≈ (ρb/ρu)SF(c=0.1/c=0.5)2, can be obtained, where the subscripts b and u indicate the burned and unburned gas. All scattering data at different temperatures for spherical flames can be better represented by ST,c=0.5/SL = 2.9[(u′/SL)(p/p0)]0.38, first proposed by Kobayashi for Bunsen flames. Also, these scattering data can be better represented by (ST,c=0.5-SL)/u′= 0.16Da0.39 with small variations, where the Damköhler number Da = (LI/ u′)(SL/δL) and LI is the integral length scale.
關鍵字(中) ★ 最小引燃能量
★ 引燃轉折
★ 高溫高壓紊流預混火焰速度
★ 火焰紊流雷諾數
關鍵字(英) ★ minimum ignition energies
★ ignition transition
★ high-temperature/high-pressure turbulent burning velocities
★ turbulent flame Reynolds number
論文目次
中文摘要 I
Abstract III
致謝 VI
Contents VII
List of Tables IX
List of Figures X
Nomenclature XII
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.1.1 High pressure turbulent premixed combustion 1
1.1.2 Spark ignition and minimum ignition energy 1
1.1.3 Turbulent burning velocity measurements 2
1.2 Objectives of this study 3
1.3 Structure of this thesis 3
Chapter 2 Selected Reviews of Relevant Literature 5
2.1 Spark ignition and minimum ignition energy 5
2.2 Minimum ignition energy transition 6
2.3 The correlation of turbulent burning velocity 9
Chapter 3 Experimental Apparatuses and Diagnostics of Minimum Ignition Energy Measurements 12
3.1 Turbulent premixed combustion facility 12
3.2 Minimum ignition energy measurements 13
3.3 Logistic regression method 14
Chapter 4 Experimental Apparatuses and Diagnostics of Turbulent Burning Velocity Measurements 19
4.1 Perforated plate heater and temperature measurements 19
4.2 Schlieren image and flame speed determination
22
Chapter 5 Results and Discussion for Minimum Ignition Energies 35
5.1 Effects of the electrode gap and pressure on laminar minimum ignition energy 35
5.2 Flame kernel development in different regimes at p = 5 atm 36
5.3 Minimum ignition energy transition and its scaling from 1 to 5 atm 37
Chapter 6 Results and Discussion for Turbulent Burning Velocities 47
6.1 Power-law dependence 47
6.2 General correlations 50
Chapter 7 Conclusions and Future Work 58
7.1 High-pressure minimum ignition energy transition
58
7.2 The correlation of expanding unity-Lewis-number methane/air turbulent flames 59
7.3 Recommendations for future works 61
Bibliography 62
參考文獻
[1] Eckhoff, R.K., Ngo, M. and Olsen W., On the minimum ignition energy (MIE) for propane/air, J. Hazardous Materials, Vol. 175, pp. 293-297, 2010.
[2] Abdel-Gayed, R.G., Dradley, D. and Lawes, M., Turbulent burning velocities: a general correlation in terms of straining rates, Proc. R. Soc. London, Ser. A, Vol. 414, pp. 389-413, 1987.
[3] Neophytou, A., Spark ignition and flame propagation in sprays, University of Cambridge, Ph.D Thesis, 2010.
[4] Lewis, B. and von Elbe, G., Combustion, Flame and Explosions of Gases, Academic Press, New York, 1961.
[5] Bane, S.P.M., Ziegler, J.L., Boettcher, P.A., Coronel, S.A. and Shepherd, J.E., Experimental investigation of spark ignition energy in kerosene, hexane, and hydrogen, J. Loss Prevent. Process Ind., Vol. 26, pp. 290-294, 2013.
[6] Ju, Y. and Sun, W., Plasma assisted combustion: dynamics and chemistry, Prog. Energy Combust. Sci., Vol. 48, pp. 21-83, 2015.
[7] Kono, M., Hatori, K. and Iinuma, K., Investigation on ignition ability of composite sparks in flowing mixtures, Proc. Combust. Inst., Vol. 20, pp. 133-140, 1984.
[8] Ziegler, G.F.W., Wagner, E.P. and Maly, R., Ignition of lean methane-air mixtures by high pressure glow and arc discharges, Proc. Combust. Inst., Vol. 20, pp. 1817-1824, 1984.
[9] Bradley, D. and Lung, F.K.K., Spark ignition and the early stages of turbulent flame propagation, Combust. Flame, Vol. 69, pp. 71-93, 1987.
[10] Kono, M., Niu, K., Tsukamoto, T. and Ujiie, Y., Mechanism of flame kernel formation produced by short duration sparks, Proc. Combust. Inst., Vol. 22, pp. 1643-1649, 1988.
[11] Ishii, K., Tsukamoto, T., Ujiie, Y. and Kono, M., Analysis of ignition mechanism of combustible mixtures by composite sparks, Combust. Flame, Vol. 91, pp. 153-164. 1992.
[12] Kravchik, T., Sher, E. and Heywood, J.B., From spark ignition to flame initiation, Combust. Sci. Technol., Vol. 108, pp. 1-30, 1995.
[13] Thiele, M., Warnatz, J., Dreizler, A., Lindenmaier, S., Schiesl, R., Maas, U., Grant, A. and Ewart, P., Spark ignited hydrogen/air mixtures: Two dimensional detailed modeling and laser based diagnostics, Combust. Flame, Vol. 128, pp. 74-87, 2002.
[14] Huang, C.C., Shy, S.S., Liu, C.C. and Yan, Y.Y., A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes, Proc. Combust. Inst., Vol. 31, pp. 1401-1409, 2007.
[15] Chakraborty, N., Mastorakos, E. and Cant, R.S., Effects of turbulence on spark ignition in inhomogeneous mixtures: a direct numerical simulation (DNS) study, Combust. Sci. Technol., Vol. 179, pp. 293-317, 2007.
[16] Shy, S.S., Shih, W.T. and Liu, C.C., More on minimum ignition energy transition for lean premixed turbulent methane combustion in flamelet and distributed regimes, Combust. Sci. Technol., Vol. 180, pp. 1735-1747, 2008.
[17] Mastorakos, E., Ignition of turbulent non-premixed flames, Prog. Energy Combust. Sci., Vol. 35 (1), pp. 57-97, 2009.
[18] Han, J., Yamashita, H. and Hayashi, N., Numerical study on the spark ignition characteristics of a methane–air mixture using detailed chemical kinetics, Combust. Flame, Vol. 157, pp. 1414-1421, 2010.
[19] Shy, S.S., Liu, C.C. and Shih, W.T., Ignition transition in turbulent premixed combustion, Combust. Flame, Vol. 157, pp. 341-350, 2010.
[20] Bane, S.P.M., Shepherd, J.E., Kwon, E. and Day, A.C., Statistical analysis of electrostatic spark ignition of lean H2/O2/Ar mixtures, Int. J. Hydrogen Energy, Vol. 36, pp. 2344-2350, 2011.
[21] Chen, Z., Burke, M.P. and Ju, Y., On the critical flame radius and minimum ignition energy for spherical flame initiation, Proc. Combust. Inst., Vol. 33, pp. 1219-1226, 2011.
[22] Peng, M.W., Shy, S.S., Shiu, Y.W. and Liu, C.C., High pressure ignition kernel development and minimum ignition energy measurements in different regimes of premixed turbulent combustion, Combust. Flame, Vol. 160, pp. 1755-1766, 2013.
[23] Coronel, S.A., Mevel, R., Bane, S.P.M. and Shepherd, J.E., Experimental study of minimum ignition energy of lean H2-N2O mixtures, Proc. Combust. Inst., Vol. 34, pp. 895-902, 2013.
[24] Cardin, C., Renou, B., Cabot, G. and Boukhalfa, A.M., Experimental analysis of laser-induced spark ignition of lean turbulent premixed flames, Combust. Flame, Vol. 160, pp. 1414-1427, 2013.
[25] Sereshchenko, E., Fursenko, R., Minaev, S. and Shy, S.S., Numerical simulations of premixed flame ignition in turbulent flow, Combust. Sci. Technol., Vol. 186, pp. 1552-1561, 2014.
[26] Bane, S.P.M., Ziegler, J.L. and Shepherd, J.E., Investigation of the effect of electrode geometry on spark ignition, Combust. Flame, Vol. 162, pp. 462-469, 2015.
[27] Williams, F.A., Combustion Theory, second ed., Addison-Wesley, Redwood City, CA, 1985.
[28] Peters, N., Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
[29] Cheng, R.K. and Shepherd, I.G., The influence of burner geometry on premixed turbulent flame propagation, Combust. Flame, Vol. 85, pp. 7-26, 1991
[30] Bradley, D., Lau, A.K.C. and Lawes, M., Flame stretch rate as a determinant of turbulent burning velocity Philos. Trans. R. Soc. London Ser. A, Vol. 338, pp. 359-387, 1992.
[31] Lipatnikov, A.N. and Chomiak, J., Turbulent flame speed and thickness: Phenomenology, evaluation, and application in multi-dimensional simulations, Prog. Energy Combust. Sci., Vol. 28, pp. 1-74, 2002.
[32] Lipatnikov, A.N. and Chomiak, J., Molecular transport effects on turbulent flame propagation and structure, Prog. Energy Combust. Sci., Vol. 31, pp. 1-73, 2005.
[33] Driscoll, J.F., Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities, Prog. Energy Combust. Sci., Vol. 34, pp. 91-134, 2008.
[34] Kobayashi, H. and Kawazoe, H., Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames, Proc. Combust. Inst., Vol. 28, pp. 375-382, 2000.
[35] Bradley, D., Haq, M.Z., Hicks, R.A., Kitagawa, T., Lawes, M., Sheppard, C.G.W. and Woolley, R., Turbulent burning velocity, burned gas distribution and associated flame surface definition, Combust. Flame, Vol. 133, pp. 415-430, 2003.
[36] Cheng, R.K., Littlejohn, D., Strakey, P.A. and Sidwell, T., Laboratory investigations of a low-swirl injectors with H2 and CH4 at gas turbine conditions, Proc. Combust. Inst., Vol. 32, pp. 3001-3009, 2009.
[37] Liu, C.C., Shy, S.S., Chen, H.C. and Peng, M.W., On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure, Proc. Combust. Inst., Vol. 33, pp. 1293-1299, 2011.
[38] Daniele, S., Jansohn, P., Mantzaras, J. and Boulouchos, K., Turbulent flame speed for syngas at gas turbine relevant conditions, Proc. Combust. Inst., Vol. 33, pp. 2937-2944, 2011.
[39] Liu, C.C., Shy, S.S., Peng, M.W., Chiu, C.W. and Dong, Y.C., High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers, Combust. Flame, Vol. 159, pp. 2608-2619, 2012
[40] Liu, C.C., Shy, S.S., Chiu, C.W., Peng, M.W. and Chung, H.J., Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment, Int. J. Hydrogen Energy. Vol. 36, pp. 8595-8603, 2011.
[41] Chaudhuri, S., Wu, F., Zhu, D. and Law, C.K., Flame speed and self-similar propagation of expanding turbulent premixed flames, Phys. Rev. Lett., Vol. 108, pp. 044503-1-5, 2012.
[42] Chaudhuri, S., Wu, F. and Law, C.K., Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations, Phys. Rev. E, Vol. 88, pp. 033005-1-13, 2013.
[43] Tamadonfar, P. and Gülder, Ö.L., Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames, Combust. Flame, Vol. 161, pp. 3154-3165, 2014.
[44] Wu, F., Saha, A., Chaudhuri, S. and Law, C.K., Propagation speeds of expanding turbulent flames of C4 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch-affected local extinction, Proc. Combust. Inst., Vol. 35, pp. 1501-1508, 2015.
[45] Shy, S.S., Liu, C.C., Lin, J.Y., Chen, L.L., Lipatnikov, A.N. and Yang, S.I., Correlations of high-pressure lean methane and syngas turbulent burning velocities: Effects of turbulent Reynolds, Damköhler, and Karlovitz numbers, Proc. Combust. Inst., Vol. 35, pp. 1509-1516, 2015.
[46] Venkateswaran, P., Marshall, A., Seitzman, J. and Lieuwen, T., Scaling turbulent flame speeds of negative Markstein length fuel blends using leading points concepts, Combust. Flame, Vol. 162, pp. 375-387, 2015.
[47] Kobayashi, H., Seyama, K., Hagiwara, H. and Ogami, Y., Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature, Proc. Combust. Inst., Vol. 30, pp. 827-834, 2005.
[48] Lawes, M., Ormsby, M.P., Sheppard, C.G.W. and Woolley, R., The turbulent burning velocity of iso-octane/air mixtures, Combust. Flame, Vol. 159, pp. 1949-1959, 2012.
[49] Lin, Y.C., Jansohn, P. and Boulouchos, K., Turbulent flame speed for hydrogen-rich fuel gases at gas turbine relevant conditions, Int. J. Hydrogen Energy, Vol. 39, pp. 20242-20254, 2014.
[50] Shy, S.S., Lin, W.J. and Wei, J.C., An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion, Proc. R. Soc. Lond. A, Vol. 456, pp. 1997-2019, 2000.
[51] Shy, S.S., Lin, W.J. and Peng, K.Z., High-intensity turbulent premixed combustion: General correlations of turbulent burning velocities in a new cruciform burner, Proc. Combust. Inst., Vol. 28, pp. 561-568, 2000.
[52] Yang, T.S. and Shy, S.S., Two-way interaction between solid particles and homogeneous air turbulence: Particle settling rate and turbulence modification measurements, J. Fluid Mech., Vol. 526, pp. 171-216, 2005.
[53] Mathurkar, H., Minimum ignition energy and ignition probability for methane, hydrogen and their mixtures, University of Loughborough, Ph.D Thesis, 2009.
[54] Bane, S.P.M., Spark ignition: Experimental and numerical investigation with application to aviation safety, California Institute of Technology, Ph.D Thesis, 2010.
[55] Law, C.K., Combustion Physics, Cambridge University Press, New York, 2006.
[56] Ballal, D. R. and Lefebvre, A.H., Ignition and flame quenching in flowing gaseous mixtures, Proc. Roy. Soc. Lond., Vol. 357, pp. 163–181, 1977.
[57] Shy, S.S., I, W.K. and Lin, M.L., A new cruciform burner and its turbulence measurements for premixed turbulent combustion study, Exp. Thermal Fluid Sci., Vol. 20, pp. 105-114, 2000.
[58] Filatyev, S.A., Driscoll, J.F., Carter, C.D. and Donbar, J.M., Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates and surface densities, Combust. Flame, Vol. 141, pp. 1-21, 2005.
[59] Kerstein, A.R., Ashurst, W.T. and Williams, F.A., Field equation for interface propagation in an unsteady homogeneous flow field, Phys. Rev. A, Vol. 37, pp. 2728-2731, 1988.
[60] Peters, N., The turbulent burning velocity for large-scale and small-scale turbulence, J. Fluid Mech., Vol. 384, pp. 107-132, 1999.
[61] Shy, S.S., Chen, Y.C., Yang, C.H., Liu, C.C. and Huang, C.M., Effects of H2 or CO2 addition, equivalence ratio, and turbulent straining on turbulent burning velocities for lean premixed methane combustion, Combust. Flame, Vol. 153, pp. 510–524, 2008.
[62] Yang, S.I. and Shy, S.S., Global quenching of premixed CH4/air flames: Effects of turbulent straining, equivalence ratio, and radiative heat loss, Proc. Combust. Inst., Vol. 29, pp. 1841-1847, 2002.
[63] Shy, S.S., Flame quenching by turbulence: Criteria of flame quenching, Combustion Phenomena: Selected Mechanisms of Flame Formation, Propagation and Extinction (J. Jarosinski and B. Veyssiere, eds.), Taylor & Francis, London, pp. 110-118, 2009.
[64] Liu, C.C., Shy, S.S., Dong, Y.C. and Peng, M.W., More on global quenching of premixed CH4/diluent/air flames by intense near-isotropic turbulence, Combust. Sci. Technol., Vol. 184, pp. 1916-1933, 2012.
[65] Shy, S.S., Shiu, Y.W. Jiang, L.J., Liu, C.C. and Minaev, S., Measurement and scaling of minimum ignition energy transition for spark ignition in intense isotropic turbulence from 1 to 5 atm, Proc. Combust. Inst., Vol. 36 (2), pp. 1785-1791, 2017.
[66] Zeldovich, Y.B., Librovich, G.I. and Makhviladze, G.M., The Mathematical Theory of Combustion and Explosions, Consultants Bureau, Ney York, 1985.
[67] Kurdyumov, V., Blasco, J., Sánchez, A.L. and Linán, A., On the calculation of the minimum ignition energy, Combust. Flame, Vol. 136, pp. 394-397, 2004.
[68] Gu, X.J., Haq, M.Z., Lawes, M. and Woolley, R., Laminar burning velocity and Markstein lengths of methane-air mixtures, Combust. Flame, Vol. 121, pp. 41-58, 2000.
[69] Bradley, D., Lawes, M. and Mansour, M.S., Correlation of turbulent burning velocities of ethanol–air, measured in a fan-stirred bomb up to 1.2 MPa, Combust. Flame, Vol. 158, pp. 123-138, 2011.
[70] Smallwood, G.J., Gülder, Ö.L., Snelling, D.R., Deschamps, B.M. and Gökalp, I., Characterization of flame front surfaces in turbulent premixed methane/air combustion, Combust. Flame, Vol. 101, pp. 461-470, 1995.
指導教授 施聖洋 審核日期 2017-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明