參考文獻 |
[1] Eckhoff, R.K., Ngo, M. and Olsen W., On the minimum ignition energy (MIE) for propane/air, J. Hazardous Materials, Vol. 175, pp. 293-297, 2010.
[2] Abdel-Gayed, R.G., Dradley, D. and Lawes, M., Turbulent burning velocities: a general correlation in terms of straining rates, Proc. R. Soc. London, Ser. A, Vol. 414, pp. 389-413, 1987.
[3] Neophytou, A., Spark ignition and flame propagation in sprays, University of Cambridge, Ph.D Thesis, 2010.
[4] Lewis, B. and von Elbe, G., Combustion, Flame and Explosions of Gases, Academic Press, New York, 1961.
[5] Bane, S.P.M., Ziegler, J.L., Boettcher, P.A., Coronel, S.A. and Shepherd, J.E., Experimental investigation of spark ignition energy in kerosene, hexane, and hydrogen, J. Loss Prevent. Process Ind., Vol. 26, pp. 290-294, 2013.
[6] Ju, Y. and Sun, W., Plasma assisted combustion: dynamics and chemistry, Prog. Energy Combust. Sci., Vol. 48, pp. 21-83, 2015.
[7] Kono, M., Hatori, K. and Iinuma, K., Investigation on ignition ability of composite sparks in flowing mixtures, Proc. Combust. Inst., Vol. 20, pp. 133-140, 1984.
[8] Ziegler, G.F.W., Wagner, E.P. and Maly, R., Ignition of lean methane-air mixtures by high pressure glow and arc discharges, Proc. Combust. Inst., Vol. 20, pp. 1817-1824, 1984.
[9] Bradley, D. and Lung, F.K.K., Spark ignition and the early stages of turbulent flame propagation, Combust. Flame, Vol. 69, pp. 71-93, 1987.
[10] Kono, M., Niu, K., Tsukamoto, T. and Ujiie, Y., Mechanism of flame kernel formation produced by short duration sparks, Proc. Combust. Inst., Vol. 22, pp. 1643-1649, 1988.
[11] Ishii, K., Tsukamoto, T., Ujiie, Y. and Kono, M., Analysis of ignition mechanism of combustible mixtures by composite sparks, Combust. Flame, Vol. 91, pp. 153-164. 1992.
[12] Kravchik, T., Sher, E. and Heywood, J.B., From spark ignition to flame initiation, Combust. Sci. Technol., Vol. 108, pp. 1-30, 1995.
[13] Thiele, M., Warnatz, J., Dreizler, A., Lindenmaier, S., Schiesl, R., Maas, U., Grant, A. and Ewart, P., Spark ignited hydrogen/air mixtures: Two dimensional detailed modeling and laser based diagnostics, Combust. Flame, Vol. 128, pp. 74-87, 2002.
[14] Huang, C.C., Shy, S.S., Liu, C.C. and Yan, Y.Y., A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes, Proc. Combust. Inst., Vol. 31, pp. 1401-1409, 2007.
[15] Chakraborty, N., Mastorakos, E. and Cant, R.S., Effects of turbulence on spark ignition in inhomogeneous mixtures: a direct numerical simulation (DNS) study, Combust. Sci. Technol., Vol. 179, pp. 293-317, 2007.
[16] Shy, S.S., Shih, W.T. and Liu, C.C., More on minimum ignition energy transition for lean premixed turbulent methane combustion in flamelet and distributed regimes, Combust. Sci. Technol., Vol. 180, pp. 1735-1747, 2008.
[17] Mastorakos, E., Ignition of turbulent non-premixed flames, Prog. Energy Combust. Sci., Vol. 35 (1), pp. 57-97, 2009.
[18] Han, J., Yamashita, H. and Hayashi, N., Numerical study on the spark ignition characteristics of a methane–air mixture using detailed chemical kinetics, Combust. Flame, Vol. 157, pp. 1414-1421, 2010.
[19] Shy, S.S., Liu, C.C. and Shih, W.T., Ignition transition in turbulent premixed combustion, Combust. Flame, Vol. 157, pp. 341-350, 2010.
[20] Bane, S.P.M., Shepherd, J.E., Kwon, E. and Day, A.C., Statistical analysis of electrostatic spark ignition of lean H2/O2/Ar mixtures, Int. J. Hydrogen Energy, Vol. 36, pp. 2344-2350, 2011.
[21] Chen, Z., Burke, M.P. and Ju, Y., On the critical flame radius and minimum ignition energy for spherical flame initiation, Proc. Combust. Inst., Vol. 33, pp. 1219-1226, 2011.
[22] Peng, M.W., Shy, S.S., Shiu, Y.W. and Liu, C.C., High pressure ignition kernel development and minimum ignition energy measurements in different regimes of premixed turbulent combustion, Combust. Flame, Vol. 160, pp. 1755-1766, 2013.
[23] Coronel, S.A., Mevel, R., Bane, S.P.M. and Shepherd, J.E., Experimental study of minimum ignition energy of lean H2-N2O mixtures, Proc. Combust. Inst., Vol. 34, pp. 895-902, 2013.
[24] Cardin, C., Renou, B., Cabot, G. and Boukhalfa, A.M., Experimental analysis of laser-induced spark ignition of lean turbulent premixed flames, Combust. Flame, Vol. 160, pp. 1414-1427, 2013.
[25] Sereshchenko, E., Fursenko, R., Minaev, S. and Shy, S.S., Numerical simulations of premixed flame ignition in turbulent flow, Combust. Sci. Technol., Vol. 186, pp. 1552-1561, 2014.
[26] Bane, S.P.M., Ziegler, J.L. and Shepherd, J.E., Investigation of the effect of electrode geometry on spark ignition, Combust. Flame, Vol. 162, pp. 462-469, 2015.
[27] Williams, F.A., Combustion Theory, second ed., Addison-Wesley, Redwood City, CA, 1985.
[28] Peters, N., Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
[29] Cheng, R.K. and Shepherd, I.G., The influence of burner geometry on premixed turbulent flame propagation, Combust. Flame, Vol. 85, pp. 7-26, 1991
[30] Bradley, D., Lau, A.K.C. and Lawes, M., Flame stretch rate as a determinant of turbulent burning velocity Philos. Trans. R. Soc. London Ser. A, Vol. 338, pp. 359-387, 1992.
[31] Lipatnikov, A.N. and Chomiak, J., Turbulent flame speed and thickness: Phenomenology, evaluation, and application in multi-dimensional simulations, Prog. Energy Combust. Sci., Vol. 28, pp. 1-74, 2002.
[32] Lipatnikov, A.N. and Chomiak, J., Molecular transport effects on turbulent flame propagation and structure, Prog. Energy Combust. Sci., Vol. 31, pp. 1-73, 2005.
[33] Driscoll, J.F., Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities, Prog. Energy Combust. Sci., Vol. 34, pp. 91-134, 2008.
[34] Kobayashi, H. and Kawazoe, H., Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames, Proc. Combust. Inst., Vol. 28, pp. 375-382, 2000.
[35] Bradley, D., Haq, M.Z., Hicks, R.A., Kitagawa, T., Lawes, M., Sheppard, C.G.W. and Woolley, R., Turbulent burning velocity, burned gas distribution and associated flame surface definition, Combust. Flame, Vol. 133, pp. 415-430, 2003.
[36] Cheng, R.K., Littlejohn, D., Strakey, P.A. and Sidwell, T., Laboratory investigations of a low-swirl injectors with H2 and CH4 at gas turbine conditions, Proc. Combust. Inst., Vol. 32, pp. 3001-3009, 2009.
[37] Liu, C.C., Shy, S.S., Chen, H.C. and Peng, M.W., On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure, Proc. Combust. Inst., Vol. 33, pp. 1293-1299, 2011.
[38] Daniele, S., Jansohn, P., Mantzaras, J. and Boulouchos, K., Turbulent flame speed for syngas at gas turbine relevant conditions, Proc. Combust. Inst., Vol. 33, pp. 2937-2944, 2011.
[39] Liu, C.C., Shy, S.S., Peng, M.W., Chiu, C.W. and Dong, Y.C., High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers, Combust. Flame, Vol. 159, pp. 2608-2619, 2012
[40] Liu, C.C., Shy, S.S., Chiu, C.W., Peng, M.W. and Chung, H.J., Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment, Int. J. Hydrogen Energy. Vol. 36, pp. 8595-8603, 2011.
[41] Chaudhuri, S., Wu, F., Zhu, D. and Law, C.K., Flame speed and self-similar propagation of expanding turbulent premixed flames, Phys. Rev. Lett., Vol. 108, pp. 044503-1-5, 2012.
[42] Chaudhuri, S., Wu, F. and Law, C.K., Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations, Phys. Rev. E, Vol. 88, pp. 033005-1-13, 2013.
[43] Tamadonfar, P. and Gülder, Ö.L., Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames, Combust. Flame, Vol. 161, pp. 3154-3165, 2014.
[44] Wu, F., Saha, A., Chaudhuri, S. and Law, C.K., Propagation speeds of expanding turbulent flames of C4 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch-affected local extinction, Proc. Combust. Inst., Vol. 35, pp. 1501-1508, 2015.
[45] Shy, S.S., Liu, C.C., Lin, J.Y., Chen, L.L., Lipatnikov, A.N. and Yang, S.I., Correlations of high-pressure lean methane and syngas turbulent burning velocities: Effects of turbulent Reynolds, Damköhler, and Karlovitz numbers, Proc. Combust. Inst., Vol. 35, pp. 1509-1516, 2015.
[46] Venkateswaran, P., Marshall, A., Seitzman, J. and Lieuwen, T., Scaling turbulent flame speeds of negative Markstein length fuel blends using leading points concepts, Combust. Flame, Vol. 162, pp. 375-387, 2015.
[47] Kobayashi, H., Seyama, K., Hagiwara, H. and Ogami, Y., Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature, Proc. Combust. Inst., Vol. 30, pp. 827-834, 2005.
[48] Lawes, M., Ormsby, M.P., Sheppard, C.G.W. and Woolley, R., The turbulent burning velocity of iso-octane/air mixtures, Combust. Flame, Vol. 159, pp. 1949-1959, 2012.
[49] Lin, Y.C., Jansohn, P. and Boulouchos, K., Turbulent flame speed for hydrogen-rich fuel gases at gas turbine relevant conditions, Int. J. Hydrogen Energy, Vol. 39, pp. 20242-20254, 2014.
[50] Shy, S.S., Lin, W.J. and Wei, J.C., An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion, Proc. R. Soc. Lond. A, Vol. 456, pp. 1997-2019, 2000.
[51] Shy, S.S., Lin, W.J. and Peng, K.Z., High-intensity turbulent premixed combustion: General correlations of turbulent burning velocities in a new cruciform burner, Proc. Combust. Inst., Vol. 28, pp. 561-568, 2000.
[52] Yang, T.S. and Shy, S.S., Two-way interaction between solid particles and homogeneous air turbulence: Particle settling rate and turbulence modification measurements, J. Fluid Mech., Vol. 526, pp. 171-216, 2005.
[53] Mathurkar, H., Minimum ignition energy and ignition probability for methane, hydrogen and their mixtures, University of Loughborough, Ph.D Thesis, 2009.
[54] Bane, S.P.M., Spark ignition: Experimental and numerical investigation with application to aviation safety, California Institute of Technology, Ph.D Thesis, 2010.
[55] Law, C.K., Combustion Physics, Cambridge University Press, New York, 2006.
[56] Ballal, D. R. and Lefebvre, A.H., Ignition and flame quenching in flowing gaseous mixtures, Proc. Roy. Soc. Lond., Vol. 357, pp. 163–181, 1977.
[57] Shy, S.S., I, W.K. and Lin, M.L., A new cruciform burner and its turbulence measurements for premixed turbulent combustion study, Exp. Thermal Fluid Sci., Vol. 20, pp. 105-114, 2000.
[58] Filatyev, S.A., Driscoll, J.F., Carter, C.D. and Donbar, J.M., Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates and surface densities, Combust. Flame, Vol. 141, pp. 1-21, 2005.
[59] Kerstein, A.R., Ashurst, W.T. and Williams, F.A., Field equation for interface propagation in an unsteady homogeneous flow field, Phys. Rev. A, Vol. 37, pp. 2728-2731, 1988.
[60] Peters, N., The turbulent burning velocity for large-scale and small-scale turbulence, J. Fluid Mech., Vol. 384, pp. 107-132, 1999.
[61] Shy, S.S., Chen, Y.C., Yang, C.H., Liu, C.C. and Huang, C.M., Effects of H2 or CO2 addition, equivalence ratio, and turbulent straining on turbulent burning velocities for lean premixed methane combustion, Combust. Flame, Vol. 153, pp. 510–524, 2008.
[62] Yang, S.I. and Shy, S.S., Global quenching of premixed CH4/air flames: Effects of turbulent straining, equivalence ratio, and radiative heat loss, Proc. Combust. Inst., Vol. 29, pp. 1841-1847, 2002.
[63] Shy, S.S., Flame quenching by turbulence: Criteria of flame quenching, Combustion Phenomena: Selected Mechanisms of Flame Formation, Propagation and Extinction (J. Jarosinski and B. Veyssiere, eds.), Taylor & Francis, London, pp. 110-118, 2009.
[64] Liu, C.C., Shy, S.S., Dong, Y.C. and Peng, M.W., More on global quenching of premixed CH4/diluent/air flames by intense near-isotropic turbulence, Combust. Sci. Technol., Vol. 184, pp. 1916-1933, 2012.
[65] Shy, S.S., Shiu, Y.W. Jiang, L.J., Liu, C.C. and Minaev, S., Measurement and scaling of minimum ignition energy transition for spark ignition in intense isotropic turbulence from 1 to 5 atm, Proc. Combust. Inst., Vol. 36 (2), pp. 1785-1791, 2017.
[66] Zeldovich, Y.B., Librovich, G.I. and Makhviladze, G.M., The Mathematical Theory of Combustion and Explosions, Consultants Bureau, Ney York, 1985.
[67] Kurdyumov, V., Blasco, J., Sánchez, A.L. and Linán, A., On the calculation of the minimum ignition energy, Combust. Flame, Vol. 136, pp. 394-397, 2004.
[68] Gu, X.J., Haq, M.Z., Lawes, M. and Woolley, R., Laminar burning velocity and Markstein lengths of methane-air mixtures, Combust. Flame, Vol. 121, pp. 41-58, 2000.
[69] Bradley, D., Lawes, M. and Mansour, M.S., Correlation of turbulent burning velocities of ethanol–air, measured in a fan-stirred bomb up to 1.2 MPa, Combust. Flame, Vol. 158, pp. 123-138, 2011.
[70] Smallwood, G.J., Gülder, Ö.L., Snelling, D.R., Deschamps, B.M. and Gökalp, I., Characterization of flame front surfaces in turbulent premixed methane/air combustion, Combust. Flame, Vol. 101, pp. 461-470, 1995. |