參考文獻 |
[1] 黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
[2] National renewable energy laboratory(USA), 2008, http://www.nrel.gov/.
[3] Swanson, “A vision for crystalline silicon photovoltaics”, Progress in Photovoltaics, Vol. 14, pp. 443-453, 2006.
[4] H. Sakata and M. Tanaka, “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, IEEE 4th World Conference, 2006.
[5] ITRPV Edition 2016_Revision 1,2016,http://www.itrpv.net/Home/.
[6] Kenta Arima, et al. “Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale”, Physica B, Vol 376–377, pp.893–896, 2006.
[7] Yang H, et al. “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol.472, pp.125-129, 2005.
[8] Chapman, B., Glow Discharge Processes, John Wiley & Sons lnc, 1980.
[9] 羅正忠,半導體製程技術導論,歐亞出版社,2006 年。
[10] I. H. Hutchinson, Principles of Plasma Diagnostics 2nd, Cambridge University Press, 2002.
[11] Matsuda A, et al. “Solar Energy & Solar Cells”, 2003,78,3
[12] Akihisa Matsuda, “Thin-Film Silicon — Growth Process and Solar Cell Application”, J.J.A.P., Vol 43, pp. 7909–7920, 2004.
[13] Yao Ruohe, et al. “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, 1997.
[14] Kushner M J, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, J.J.A.P., Vol 62, pp. 2803–2811, 1987.
[15] W.G.J.H.M. van Shark, “Methods of Deposition of Hydrogenated Amorphous Silicon Device Applications”, pp. 80–81, 2002.
[16] Zhu Zu song, et al. “Studying on the Electron Charateristic of Argon Plasma in the PECVD System”, Vacuum, Vol 84, pp. 1381–1384, 2010.
[17] ]WANG Qing, BA Dechun, FENG Jian, “Diagnosis of the Argon Plasma in a PECVD Coating Machine”, Plasma Science and Technology, Vol 10, No. 6, 2008.
[18] M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, 2001.
[19] 莊達人,VLSI 製造技術,高立圖書有限公司,1996年。
[20] J. Venables, “Nucleation and Growth of Thin films”, Rep. Prog. Phys., Vol 47, pp. 399, 1984.
[21] Triska, A., D. Dennison, and H. Fritzsche, Bull. Am., Phys. Soc., Vol 20, pp. 392, 1975.
[22] R.E. I. Schropp and M.Zeman, “Amorphous and Microcrystalline Silicon Solar Cells: Modeling”, Materials and Device Technology, Kluwer Academic, Boston, 1998.
[23] John Robertson. “Growth mechanism of hydrogenated amorphous silicon” , Journal of Non-Crystalline Solids, Vol 266-269, pp. 79–83, 2000.
[24] 陳治明,非晶半導體材料與器件,科學出版社,民國八十年。
[25] A. Matsuda, "Microcrystalline silicon. Growth and device application" , Journal of Non-Crystalline Solids, Vol. 338, pp. 1-12, Jun 15 , 2004.
[26] ]H. F. Sterling, R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge”, Solid-State Electron, Vol 8, pp. 653, 1965.
[27] Staebler, D. L., Wronski, C. R., Appl. Phys. Lett. Vol. 31 (1977) 292-294.
[28] Burrows, M. Z., et al., “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation”, Journal of Vacuum Science & Technology A,Vol. 26(4), pp. 683-687, 2008.
[29] J. Sritharathikhun, et al., “Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Japanese Journal of Applied Physics, Vol. 46(6A), pp. 3296-3300, 2007.
[30] H. Fujiwara and M. Kondo, “Impact of epitaxial growth at the hetero interface of a-Si:H/c-Si solar cells”, Applied Physics Letters, Vol. 90, pp. 013503-013506, 2007.
[31] F. Zignani, et al., “Silicon heterojunction solar cells with p nanocrystalline thin emitter on monocrystalline substrate”, Thin Solid Films,Vol. 451–452, pp. 350–354, 2004.Vol. 451–452, pp. 350–354, 2004.
[32] U. Kroll, J. Meier,A. Shah, S. Mikhailov, and J, Weber, J. Appl. Phys. 80,4971 , 1996.
[33] Norbert H. Nickel: Hydrogen in semiconductor II, 61 , 1999.
[34] Min-sung Jeon and Koichi Kamisako “Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells”, transactions on electrical and electronic materials, vol. 10, no. 3, june 25, 2009.
[35] M.H. Brodsky, Qiming Li, B.C Pan, and Y. Yoon, Phys.1 Rev. B, 57 , 2253 , 1998.
[36] Jia Ge, et al., “Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy”, JOURNAL OF APPLIED PHYSICS 113, 234310 , 2013.
[37] Taguchi, M., et al., "24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer." Ieee Journal of Photovoltaics 4(1): 96-99, 2014.
[38] D. L. Meier, et al., “Determination of Surface Recombination Velocities for Thermal Oxide and Amorphous Silicon on Float Zone Silicon”, 17th NREL Crystalline Silicon Workshop, August, 2007.
[39] 黃惠良,曾百亨,太陽電池,五南出版社,民國九十七年十二月。
[40] T. S. Horanyi, et al, “In situ bulk lifetime measurement on silicon with a chemically passivated surface”, Applied Surface Science, Vol. 63, pp. 306-311, 1993.
[41] Huidong Yang, et al., “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol 472, pp. 125–129, 2005.
[42] P. Kumar, F. Zhu, A. Madan, “Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition”, International Journal of Hydrogen Energy, Vol 33, pp. 3938–3944, 2008.
[43] Sanjay K. Ram, et al., “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, Phys. Status Solidi©, Vol 7, No. 3–4, pp. 553–556, 2010.
[44] Shui-Yang Lien et al., “Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies”, Journal of Non-Crystalline Solids, Vol 357, pp.161–164, 2011.
[45] Yusuke Fukuda, et al. , “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp. 256–260, 2001.
[46] Matsuda A., ”Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol 337, pp. 1, 1999.
[47] H. L. Hsiao, et al., “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Applied Surface Science, Vol 142, pp. 316–321, 1999.
[48] Madoka Takai, et al., “Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma”, Appl. Phys. Lett., Vol 77, pp. 18, 2000.
[49] Zhimeng Wua, et al., “Analysis on pressure dependence of microcrystalline silicon by optical emission spectroscopy”, Physica E, Vol 33, pp. 125–129, 2006.
[50] Akihisa Matsuda, et al., “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials and Solar Cells, Vol 78, pp. 3–26, 2003.
[51] Kimihiko Saito, Michio Kondo, “Investigation of crystalline orientation factor in microcrystalline silicon thin film deposition”, Phys. Status Solidi A, Vol 207, No. 3, pp. 535–538, 2010.
[52] Masatishi Kitagawa, et al., “Properties of Hydrogenated Amorphous Silicon Prepared by ECR Plasma CVD Method”, J.J.A.P., Vol 27, pp. 2026–2031, 1988.
[53] Minsung Jeon , et al., “Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique”, Current Applied Physics 10 S237–S240 , 2010.
[54] 陳建勳,「非晶矽繞射光學元件的製作與分析」,國立中央大學物理研究所碩士論文,民國九十四年。
[55] P. Klement, et al., "Correlation between optical emission spectroscopy of hydrogen/germane plasma and the Raman crystallinity factor of germanium layers," Appl. Phys. Lett., Vol. 102 (2013).
[56] Matsuda,et al., "Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate," Sol Energ Mat Sol C, Vol. 78, pp. 3-26 (2003).
[57] P. Tristant, et al., “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias”, Thin Solid Films, Vol. 390, pp. 51–58, 2001.
[58] 劉憲明,「寬能隙本質氫化非晶氧化矽(a-SiOx:H)薄膜光電特性與鈍化品質之關聯探討」,國立中央大學,碩士論文,民國一百零三年。
[59] 樊洁平,劉惠民,田強,「光吸收介質的吸收係數與介電函數虛部的關係,大學物理,28卷,3期,民國九十八年。
[60] 林明獻,太陽能電池技術入門,全華科技圖書股份有限公司印行 2008年。
[61] 陳建勳,「非晶矽繞射光學元件的製作與分析」,國立中央大學,物理研究所碩士論文,民國九十四年。
[62] R.Martins, et al. “Role of ion bombardment and plasma impedance on the performances presented by undoped a-Si:H films”, Thin Solid Films, Vol.383, pp.165-168, 2001.
[63] P. Tristant, et al., “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias.”, Thin Solid Films, Vol 390, pp. 51–58, 2001.
[64] Robertson, et al., “Laser plasma coupling in long pulse, long scale length plasmas”, Appl. Phys. Lett., Vol 43, pp. 54, 1983.
[65] A. Francis, et al. , “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”, Appl. Phys. Lett., Vol 71, pp. 3796, 1997.
[66] 潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用」,私立中原大學,碩士論文 ,2008年。
[67] S. Kim, et al., ” Processed optimization for excellent interface passivation quality of amorphous/crystalline silicon solar cells”, Solar Energy Materials & Solar Cells, Vol. 117, pp. 174–177, 2013
[68] N. Kosku, S. Miyazaki, “Insights into the high-rate growth of highly crystallized silicon films from inductively coupled plasma of H2 -diluted SiH4” , Thin Solid Films, 511-512 (2006) 265-270.
[69] L. Latrasse, et al., “Characterization of high density matrix microwave argon plasmas by laser absorption and electric probe diagnostics”, J. Phys. D: Appl. Phys., vol. 40, pp.5177 -5186,2007.
[70] T Moiseev, et al. , “Threshold ionization mass spectrometry in the presence of excited silane radicals”, J. Phys. D: Appl. Phys. Vol. 42, pp. 5-10, 2009.
[71] Hiden原廠操作手冊
[72] S. Guha, et al. , “Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol 61, pp. 1444, 1992.
[73] Nishimoto Tomonori, et al. , “Amorphous silicon solar cells deposited at high growth rate”, Journal Non-Crystalline Solids, Vol 299, pp. 1116–1122, 2002.
[74] 彭永福,「以溶膠凝膠法製備SiO2薄膜作TFT閘極絕緣層材料,國立中山大學」,碩士論文,2009年。
[75] 吳培慎,「利用PECVD製備超薄本質氫化非晶矽(a-Si:H)薄膜之優質鈍化成效研究」,國立中央大學,碩士論文,2015年。
[76] 張濟忠,現代薄膜技術,冶金工業出版社,2009年。
[77] 王增福,實用鍍膜技術,電子工業出版社,2008年。
[78] Moriaki Wakaki, et al.著,周海憲、程云芳譯,光學材料手冊,化學工業出版社,2010年。 |