博碩士論文 104323042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.21.248.47
姓名 曾靜琳(Ching-Lin Tseng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證
★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究★ 以RTP硒化法探討CIS薄膜及元件特性之研究
★ 局域性表面電漿共振效應應用於OLED出光增益之研究★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究
★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿
★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究★ 使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用電漿輔助化學氣相沉積(PECVD)引入矽甲烷(SiH4)、氫氣(H2)、氬氣(Ar)製備超薄氫化非晶矽本質鈍化層(< 10 nm)於矽基板上於以應用在異質接面太陽能電池。異質接面太陽能電池所需較薄之本質鈍化層,而PECVD腔體製程環境會影響本質鈍化層之品質,故如何在適當之製程環境維持本質鈍化層之優良鈍化效果是本研究專注的課題。本研究針對PECVD之製程環境變化進行探討,以期望在PECVD機台設備開發上能維持本質鈍化層之優良鈍化效果的成長。研究過程中,利用量測薄膜性質如:氫含量、結構變化…等,並搭配光放射光譜儀與四極柱質譜儀做即時性的電漿診斷分析,期望找出電漿組態對於製程環境變化之影響,並藉由此結論,在尚未成長薄膜前,就先營造出適當之製程環境。
研究結果顯示,在相同製程參數下無預鍍所沉積之本質鈍化層其載子生命週期為24us,但經預鍍後其載子生命週期可達約800us,透過光放射光譜(OES)及四極柱質譜(QMS)分析製程環境之差異性。於本PECVD系統中其SiH*放光強度需達飽和、Si*/SiH*相對強度比值達0.3~0.4之間、SiH2/SiH4之相對自由基濃度需達最低點、腔體內水氣含量降至2x106(c/s)以下、清潔腔體產生之F副產物需減少其存在以及需控制預鍍厚度約在1800nm~1900nm之間。上述研究及分析結果可獲得適當之製程環境於本PECVD系統中。
摘要(英)
In this study, ultra-thin hydrogenated amorphous silicon passivation layer (< 10 nm)was prepared on silicon substrate by using silane (SiH4), hydrogen (H2) and argon (Ar) to apply silicon heterojunction (SHJ) solar cells. The chamber of PECVD processing environment will affect the quality of growing intrinsic passivation layer due to the fact that SHJ solar need a very thin passivation layer. It is our focus of this study on how to maintain processing an excellent passivation layer in a better pre-coating environment. Therefore, the changes of the pre-coating environment in PECVD were investigated.
The results show that the passivation film with no pre-coating has a carrier lifetime of 24us, but after pre-coating its carrier lifetime up to 800us. The difference between pre-coating environment and without pre-coating environment can be analyzed by Optical Emission Spectroscopy (OES) and Quadrupole mass spectrometry (QMS). It is found that an appropriate environment of pre-coating established as follows:the absolute intensity of SiH* needs to be saturated, the ratio of Si*/SiH* is 0.3~0.4, the ratio of SiH2/SiH4 to reaches the lowest point, the water vapor is reduced to 2x106(c/s), by-products of F after cleaning needs to be reduced and thickness control on the pre-coating is 1800nm~1900nm. The best pre-coating environment in the PECVD system can be obtained from above experimental and analytical results.
關鍵字(中) ★ PECVD
★ 薄膜
關鍵字(英)
論文目次
中文摘要 IV
ABSTRACT VI
致謝 VII
目錄 VIII
圖目錄 XI
表目錄 XVI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
1-3 論文架構 6
第二章 基本理論與文獻回顧 7
2-1 化學氣相沉積(CVD) 7
2-2 電漿簡介 10
2-3 薄膜沉積原理與矽薄膜介紹 15
2-4 矽晶鈍化原理與機制 24
2-5 載子生命週期復合機制 30
2-6 電漿診斷 34
2-6-1 光放射光譜(OES) 34
2-6-2 四極柱質譜(QMS) 38
第三章 研究方法 41
3-1 實驗流程 41
3-2 實驗方法 42
3-2-1 參數設定 42
3-2-2 試片清洗步驟 43
3-2-3 試片製作 44
3-2-4 實驗步驟 44
3-3 實驗裝置與量測 46
3-3-1 射頻電漿輔助化學氣相沉積(Radio-frequency plasma enhanced chemical vapor deposition,RF-PECVD) 46
3-3-2 光放射光譜 (Optical Emission Spectroscopy,OES) 49
3-3-3 四極柱質譜(Quadrupole mass spectrometry,QMS) 53
3-3-4 光電導生命週期量測儀(Photoconductance lifetime tester) 61
3-3-5 傅立葉轉換紅外光譜(Fourier transform infrared spectroscopy,FTIR) 63
3-3-6 探針式輪廓儀(Probe Sureface profiler) 66
第四章 實驗結果與討論 68
4-1 製程環境對鈍化薄膜之影響分析 70
4-1-1 建立製程環境之標準點 70
4-1-2 未預鍍與預鍍對鈍化薄膜之影響 75
4-1-3 製程環境對鈍化薄膜結構之分析 78
4-1-4 製程環境對電漿診斷之分析 82
4-2 不同預鍍條件對製程環境之影響 90
4-2-1預鍍條件之參數設定 90
4-2-2 不同預鍍條件(高/低鍍率)對鈍化薄膜之影響 93
4-2-3 不同預鍍條件(高/低鍍率)對製程環境之電漿診斷分析 95
第五章 結論 103
參考文獻 106
參考文獻
[1] 黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
[2] National renewable energy laboratory(USA), 2008, http://www.nrel.gov/.
[3] Swanson, “A vision for crystalline silicon photovoltaics”, Progress in Photovoltaics, Vol. 14, pp. 443-453, 2006.
[4] H. Sakata and M. Tanaka, “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, IEEE 4th World Conference, 2006.
[5] ITRPV Edition 2016_Revision 1,2016,http://www.itrpv.net/Home/.
[6] Kenta Arima, et al. “Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale”, Physica B, Vol 376–377, pp.893–896, 2006.
[7] Yang H, et al. “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol.472, pp.125-129, 2005.
[8] Chapman, B., Glow Discharge Processes, John Wiley & Sons lnc, 1980.
[9] 羅正忠,半導體製程技術導論,歐亞出版社,2006 年。
[10] I. H. Hutchinson, Principles of Plasma Diagnostics 2nd, Cambridge University Press, 2002.
[11] Matsuda A, et al. “Solar Energy & Solar Cells”, 2003,78,3
[12] Akihisa Matsuda, “Thin-Film Silicon — Growth Process and Solar Cell Application”, J.J.A.P., Vol 43, pp. 7909–7920, 2004.
[13] Yao Ruohe, et al. “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, 1997.
[14] Kushner M J, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, J.J.A.P., Vol 62, pp. 2803–2811, 1987.
[15] W.G.J.H.M. van Shark, “Methods of Deposition of Hydrogenated Amorphous Silicon Device Applications”, pp. 80–81, 2002.
[16] Zhu Zu song, et al. “Studying on the Electron Charateristic of Argon Plasma in the PECVD System”, Vacuum, Vol 84, pp. 1381–1384, 2010.
[17] ]WANG Qing, BA Dechun, FENG Jian, “Diagnosis of the Argon Plasma in a PECVD Coating Machine”, Plasma Science and Technology, Vol 10, No. 6, 2008.
[18] M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, 2001.
[19] 莊達人,VLSI 製造技術,高立圖書有限公司,1996年。
[20] J. Venables, “Nucleation and Growth of Thin films”, Rep. Prog. Phys., Vol 47, pp. 399, 1984.
[21] Triska, A., D. Dennison, and H. Fritzsche, Bull. Am., Phys. Soc., Vol 20, pp. 392, 1975.
[22] R.E. I. Schropp and M.Zeman, “Amorphous and Microcrystalline Silicon Solar Cells: Modeling”, Materials and Device Technology, Kluwer Academic, Boston, 1998.
[23] John Robertson. “Growth mechanism of hydrogenated amorphous silicon” , Journal of Non-Crystalline Solids, Vol 266-269, pp. 79–83, 2000.
[24] 陳治明,非晶半導體材料與器件,科學出版社,民國八十年。
[25] A. Matsuda, "Microcrystalline silicon. Growth and device application" , Journal of Non-Crystalline Solids, Vol. 338, pp. 1-12, Jun 15 , 2004.
[26] ]H. F. Sterling, R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge”, Solid-State Electron, Vol 8, pp. 653, 1965.
[27] Staebler, D. L., Wronski, C. R., Appl. Phys. Lett. Vol. 31 (1977) 292-294.
[28] Burrows, M. Z., et al., “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation”, Journal of Vacuum Science & Technology A,Vol. 26(4), pp. 683-687, 2008.
[29] J. Sritharathikhun, et al., “Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Japanese Journal of Applied Physics, Vol. 46(6A), pp. 3296-3300, 2007.
[30] H. Fujiwara and M. Kondo, “Impact of epitaxial growth at the hetero interface of a-Si:H/c-Si solar cells”, Applied Physics Letters, Vol. 90, pp. 013503-013506, 2007.
[31] F. Zignani, et al., “Silicon heterojunction solar cells with p nanocrystalline thin emitter on monocrystalline substrate”, Thin Solid Films,Vol. 451–452, pp. 350–354, 2004.Vol. 451–452, pp. 350–354, 2004.
[32] U. Kroll, J. Meier,A. Shah, S. Mikhailov, and J, Weber, J. Appl. Phys. 80,4971 , 1996.
[33] Norbert H. Nickel: Hydrogen in semiconductor II, 61 , 1999.
[34] Min-sung Jeon and Koichi Kamisako “Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells”, transactions on electrical and electronic materials, vol. 10, no. 3, june 25, 2009.
[35] M.H. Brodsky, Qiming Li, B.C Pan, and Y. Yoon, Phys.1 Rev. B, 57 , 2253 , 1998.
[36] Jia Ge, et al., “Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy”, JOURNAL OF APPLIED PHYSICS 113, 234310 , 2013.
[37] Taguchi, M., et al., "24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer." Ieee Journal of Photovoltaics 4(1): 96-99, 2014.
[38] D. L. Meier, et al., “Determination of Surface Recombination Velocities for Thermal Oxide and Amorphous Silicon on Float Zone Silicon”, 17th NREL Crystalline Silicon Workshop, August, 2007.
[39] 黃惠良,曾百亨,太陽電池,五南出版社,民國九十七年十二月。
[40] T. S. Horanyi, et al, “In situ bulk lifetime measurement on silicon with a chemically passivated surface”, Applied Surface Science, Vol. 63, pp. 306-311, 1993.
[41] Huidong Yang, et al., “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol 472, pp. 125–129, 2005.
[42] P. Kumar, F. Zhu, A. Madan, “Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition”, International Journal of Hydrogen Energy, Vol 33, pp. 3938–3944, 2008.
[43] Sanjay K. Ram, et al., “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, Phys. Status Solidi©, Vol 7, No. 3–4, pp. 553–556, 2010.
[44] Shui-Yang Lien et al., “Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies”, Journal of Non-Crystalline Solids, Vol 357, pp.161–164, 2011.
[45] Yusuke Fukuda, et al. , “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp. 256–260, 2001.
[46] Matsuda A., ”Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol 337, pp. 1, 1999.
[47] H. L. Hsiao, et al., “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Applied Surface Science, Vol 142, pp. 316–321, 1999.
[48] Madoka Takai, et al., “Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma”, Appl. Phys. Lett., Vol 77, pp. 18, 2000.
[49] Zhimeng Wua, et al., “Analysis on pressure dependence of microcrystalline silicon by optical emission spectroscopy”, Physica E, Vol 33, pp. 125–129, 2006.
[50] Akihisa Matsuda, et al., “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials and Solar Cells, Vol 78, pp. 3–26, 2003.
[51] Kimihiko Saito, Michio Kondo, “Investigation of crystalline orientation factor in microcrystalline silicon thin film deposition”, Phys. Status Solidi A, Vol 207, No. 3, pp. 535–538, 2010.
[52] Masatishi Kitagawa, et al., “Properties of Hydrogenated Amorphous Silicon Prepared by ECR Plasma CVD Method”, J.J.A.P., Vol 27, pp. 2026–2031, 1988.
[53] Minsung Jeon , et al., “Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique”, Current Applied Physics 10 S237–S240 , 2010.
[54] 陳建勳,「非晶矽繞射光學元件的製作與分析」,國立中央大學物理研究所碩士論文,民國九十四年。
[55] P. Klement, et al., "Correlation between optical emission spectroscopy of hydrogen/germane plasma and the Raman crystallinity factor of germanium layers," Appl. Phys. Lett., Vol. 102 (2013).
[56] Matsuda,et al., "Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate," Sol Energ Mat Sol C, Vol. 78, pp. 3-26 (2003).
[57] P. Tristant, et al., “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias”, Thin Solid Films, Vol. 390, pp. 51–58, 2001.
[58] 劉憲明,「寬能隙本質氫化非晶氧化矽(a-SiOx:H)薄膜光電特性與鈍化品質之關聯探討」,國立中央大學,碩士論文,民國一百零三年。
[59] 樊洁平,劉惠民,田強,「光吸收介質的吸收係數與介電函數虛部的關係,大學物理,28卷,3期,民國九十八年。

[60] 林明獻,太陽能電池技術入門,全華科技圖書股份有限公司印行 2008年。
[61] 陳建勳,「非晶矽繞射光學元件的製作與分析」,國立中央大學,物理研究所碩士論文,民國九十四年。
[62] R.Martins, et al. “Role of ion bombardment and plasma impedance on the performances presented by undoped a-Si:H films”, Thin Solid Films, Vol.383, pp.165-168, 2001.
[63] P. Tristant, et al., “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias.”, Thin Solid Films, Vol 390, pp. 51–58, 2001.
[64] Robertson, et al., “Laser plasma coupling in long pulse, long scale length plasmas”, Appl. Phys. Lett., Vol 43, pp. 54, 1983.

[65] A. Francis, et al. , “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”, Appl. Phys. Lett., Vol 71, pp. 3796, 1997.
[66] 潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用」,私立中原大學,碩士論文 ,2008年。
[67] S. Kim, et al., ” Processed optimization for excellent interface passivation quality of amorphous/crystalline silicon solar cells”, Solar Energy Materials & Solar Cells, Vol. 117, pp. 174–177, 2013
[68] N. Kosku, S. Miyazaki, “Insights into the high-rate growth of highly crystallized silicon films from inductively coupled plasma of H2 -diluted SiH4” , Thin Solid Films, 511-512 (2006) 265-270.
[69] L. Latrasse, et al., “Characterization of high density matrix microwave argon plasmas by laser absorption and electric probe diagnostics”, J. Phys. D: Appl. Phys., vol. 40, pp.5177 -5186,2007.
[70] T Moiseev, et al. , “Threshold ionization mass spectrometry in the presence of excited silane radicals”, J. Phys. D: Appl. Phys. Vol. 42, pp. 5-10, 2009.
[71] Hiden原廠操作手冊
[72] S. Guha, et al. , “Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol 61, pp. 1444, 1992.
[73] Nishimoto Tomonori, et al. , “Amorphous silicon solar cells deposited at high growth rate”, Journal Non-Crystalline Solids, Vol 299, pp. 1116–1122, 2002.
[74] 彭永福,「以溶膠凝膠法製備SiO2薄膜作TFT閘極絕緣層材料,國立中山大學」,碩士論文,2009年。
[75] 吳培慎,「利用PECVD製備超薄本質氫化非晶矽(a-Si:H)薄膜之優質鈍化成效研究」,國立中央大學,碩士論文,2015年。
[76] 張濟忠,現代薄膜技術,冶金工業出版社,2009年。
[77] 王增福,實用鍍膜技術,電子工業出版社,2008年。
[78] Moriaki Wakaki, et al.著,周海憲、程云芳譯,光學材料手冊,化學工業出版社,2010年。
指導教授 利定東 審核日期 2017-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明