博碩士論文 104353014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.119.112.165
姓名 游輝隆(Hui-Lung Yu)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 兆聲波清洗SiC晶圓技術之研究
(The research of cleaning process with megasonic waves for SiC wafer)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 3D IC 矽穿孔封裝(Through Silicon Via, TSV)技術是被看好為下一世代的封裝主流,有別於傳統的平面封裝方式,3D IC 是將導線經由TSV直接穿過晶片與下層接點導通,原本在平面封裝必須要走的路徑,以立體堆疊的封裝方式,便可以從厚度方向較短的路徑做傳輸,以提升晶片效能並降低晶片功耗。本研究利用TSV結構的特點,Bosch蝕刻反應物種類以及清洗過程的化學藥液在TSV孔內的流體特性進行分析,調配最佳化清洗藥液,利用兆聲波技術進行TSV清洗方法,並闡述兆聲波清洗之特點。探討不同頻率的兆聲波振幅對於TSV清洗的影響,並分析TSV摩擦係數以及振幅對於清洗之影響。建立機電整合於兆聲波在全自動的濕式兆聲波清潔機台並與本研究實作結果對照分析,有了以上之基礎、規劃兆聲波清洗工法製作3D IC。另外TSV微結構分析我們將使用架構簡單、成本低的紅外線光譜式反射儀與表面污染監控系統,針對小孔徑、高密度的TSV 陣列做深度檢測研究,不受制於國外。本研究執行其兆聲波清洗能高效去除深孔內刻蝕殘餘產物,在航空業中使用3D IC設備中將有極大應用前景,而清洗設備就更為重要。
摘要(英) 3D IC through Silicon via (TSV) technology is regarded as the next generation of mainstream packaging. It’s different than traditional flat packaging. The 3D IC turns the wire through the TSV directly through the wafer and the lower contact. Originally, it must go through the path in order to reach three-dimensional stacked package in the plane. Now, it can be transmitted from a shorter path in the thickness of that direction to improve wafer efficiency and reduce wafer power. This research helped Grand Plastic Technology Corp Company fix and adjust. It’s cleaning machines. We are using the characteristics of the TSV structure. In the cleaning process different types of Bosch etch reactants and the chemical properties from the chemical process are analyzed in the TSV pore. Then we will prepare the best cleaning solution. TSV cleaning method uses mega sonic technology and features the characteristics of the mega sonic cleansing. The research explores the effects of mega sonic amplitudes at different frequencies on TSV cleaning. And then analyze the effect of TSV friction coefficient and amplitude of cleaning. The results of the establishment of the mechanical and electrical integration in automatic wet mega sonic cleaning machine have been analyzed.
關鍵字(中) ★ 直通矽晶穿孔清洗
★ 兆聲波清洗
★ 空蝕作用
★ 盲孔清洗
★ 聲場流
關鍵字(英) ★ Through silicon via
★ Mega sonic cleaning
★ Acoustic cavitation
★ buried blind via
★ Acoustic streaming
論文目次 摘要 IV
ABSTRACT V
誌謝 VI
圖目錄 IX
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 研究方法 5
1-4 論文架構 5
第二章 基礎原理與文獻回顧 6
2-1 RCA 6
2-2 超音波原理 8
2-3 兆聲波原理 11
2-4 空蝕現象 12
2-5 慣性空蝕效應 15
第三章 實驗架構 22
3-1 實驗流程 23
3-2 實驗裝置 24
3.2.1晶圓蝕刻 24
3.2.2晶圓研磨 26
3.2.3電鍍金屬鎳 27
3.2.4晶圓濕式清洗 27
3.2.5超音波清洗 28
3.2.7 SEM 掃描電子顯微鏡 33
第四章 結果及討論 34
4-1 實驗條件 34
4-2 實驗結果 35
4.2.1硬遮罩鎳清潔(Ni hard mask clean) 35
4.2.2 蝕刻SiC深孔清潔(Via etch Byproduct removal) 38
4.2.3分析結果 42
第五章 結論 45
第六章 未來展望 46
參考文獻 47
參考文獻
[1] Xuekun Sun, et al., International Journal of Machine Tools and Manufacture, Volume 44, Issue 1, 2004, p. 783.
[2] Keyes, Robert W., The Impact of Moore′s Law, Solid State Circuits Newsletter, 2006, p. 25-27.
[3] Gurevich, MI Theory of jets of ideal fluid. Nauka, Moscow, 1978, p. 536.
[4] W. Cady and M. Varadarajan, RCA clean replacement. Journal of the Electrochemical Society, 1996, p. 2064-2067.
[5] I. Kashkoush, et al., PARTICLE REMOVAL USING ULTRASONIC.
[6] E. Herbert, S. Balibar, and F. Caupin, Cavitation pressure in water. Physical Review E, 2006. 74(4): p. 041603.
[7] E.B. Flint and K.S. Suslick, The_Temperature_of_Cavitation. Science, New Series, 1991, p. 1397-1399.
[8] A. Brotchie, F. Grieser, and M. Ashokkumar, Effect of Power and Frequency on Bubble-Size Distributions in Acoustic Cavitation. Physical Review Letters, 2009. 102(8): p. 084302.
[9] Brennen, Christopher. , Environmental Health Perspectives, Vol 64, 1985, p. 233-252.
[10] Oxford University Press., "Free radical generation by ultrasound in aqueous and nonaqueous solutions." Cavitation and Bubble Dynamics", 2015, p. 21.
[11] Birkhoff G, Zarantonello E. H, Jets, Wakes, and Cavities. , Academic Press, 1957, p. 406.
[12] Gurevich, MI Theory of jets of ideal fluid. Nauka, Moscow, 1978, p. 536.
[13] Lorenzo Albanese, et al., Beer-brewing powered by controlled hydrodynamic cavitation: Theory and real-scale experiments, 2016, p. 37.
[14] U. Neis, K. Nickel and A. Tiehm, "Enhancement of anaerobic sludge digestion by ultrasonic disintegration". Water Science and Technology, 2000, p. 73.
[15] Oie, S, et al., Microbial contamination by ultrasonic humidifier. Micro bios, 1992, p. 292–293.
[16] Z. Han, M. Keswani, and S. Raghavan, Megasonic Cleaning of Blanket and Patterned Samples in Carbonated Ammonia Solutions for Enhanced Particle Removal and Reduced Feature Damage. IEEE Transactions on Semiconductor Manufacturing, 2013. 26(3): p. 400-405.
[17] S. Kumari, et al., Control of sonoluminescence signal in deionized water using carbon dioxide. Microelectronic Engineering, 2011, p. 3437-3441.
[18] Bong Kyun Kang, et al., Acoustic Cavitation Behavior in Isopropyl Alcohol Added Cleaning Solution, 2013, p. 169-172
[19] C. Franklin. Megasonic agitation allows removal of chemically amplified photoresists, 2009,p. 62.
[20] B.-K. Kang, M.-S. Kim, and J.-G. Park, Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning, 2014, p. 1496-1503.
[21] C. Franklin, Megasonic agitation allows removal of chemically amplified photoresists, 2009, p. 62.
[22] S.H. Kim, et al., The effect of ultrasonic agitation on the stripping of photoresist using supercritical CO2 and co-solvent formulation. Microelectronic Engineering, 2009, p. 171-175.
[23] K. Qin and Y. Li, Mechanisms of particle removal from silicon wafer surface in wet chemical cleaning process. Journal of Colloid and Interface Science, 2003. 261(2): p. 569-574.
[24] A.A. Busnaina, I.I. Kashkoush, and G.W. Gale, An experimental study of megasonic cleaning of silicon wafers. Journal of the Electrochemical Society, 1995, p. 2812-2817.
[25] A.A. Busnaina and G.W. Gale, Ultrasonic and megasonic particle removal. Proc. Precis. Clean, 1995, p. 347-359.
[26] K. Bakhtari, et al., Experimental and numerical investigation of nanoparticle removal using acoustic streaming and the effect of time. Journal of the electrochemical society, 2006, p. G846-G850.
[27] H. Lin, A.A. Busnaina, and N. Moumen, Surface Cleaning Mechanisms and Future Cleaning Requirements. IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 2000, p. 328-333.
[28] E.B. Flint and K.S. Suslick, The_Temperature_of_Cavitation. Science, New Series, 1991, p. 1397-1399.
[29] Adam Brotchie, Franz Grieser, and Muthupandian Ashokkumar, Effect of Power and Frequency on Bubble-Size Distributions in Acoustic Cavitation. Physical Review Letters, 2009, p. 102.
[30] Kern, Werner. , "The evolution of silicon wafer cleaning technology." Journal of the Electrochemical Society 137.6, 1990, p. 1887-1892.
指導教授 李雄(Xiong Li) 審核日期 2017-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明