博碩士論文 103353019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.145.32.221
姓名 吳智瑜(Chih-Yu Wu)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 質子交換膜燃料電池堆模組化設計
(The modularization of Proton Exchange Membrane Fuel Cell Stack)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-1以後開放)
摘要(中) 本研究使用一簡單之機構來達到燃料電池電堆模組化之效果,以利於燃料電池電堆之拆裝與維修,並同時縮減雙極板之厚度以提升體積功率密度與重量功率密度,且使用本模組完全不會增加額外的體積與重量,改善了過往模組化整體系統體積龐大之缺點。
本研究透過對不同電池數之電堆進行介面壓力與電化學交流阻抗量測來檢驗本模組化設計是否會對電池有會有增加阻抗之影響,以及進行電池內部燃料流道之壓力降與電池電壓動態負載來檢驗是否會有流阻之影響,最後對電堆進行不同溫度之性能測試來驗證模組化後之電堆性能。
研究成果顯示本模組化確實能夠縮短拆裝與維修所需之時間,且無過多之接觸阻抗與燃料流阻,擁有模組化之優點並改善增加機構會產生之缺點,證實此為一成功且實用之設計。
摘要(英)
In this work, we develop a simple design for modularizing PEM fuel cell stacks to facilitate disassembling and maintenance of a fuel cell stack. In addition, reducing the thickness of the bipolar plate to increase the volumetric and specific power density. This new design avoids the disadvantage of other modularization design that usually increase quite a lot the volume and weight of the fuel cell stack.
The interface pressure and electrochemical impedance are measured for stacks consist of different number of cells to study the influence of this new modularization design on fuel cell performance. Effects gas flow resistance and interfacial electrical resistance are investigated.
The results show that this new modularization design does actually decrease the disassembling and maintenance time, while retain almost the same value of contact impedance and fuel flow resistance as un-modularized stack. It proves that the modularization design in this work is successful and practical.
關鍵字(中) ★ 質子交換膜燃料電池
★ 電池堆
★ 模組化
關鍵字(英) ★ PEM fuel cell
★ stack
★ modularization
論文目次
中文摘要 I
致謝 III
目錄 IV
表目錄 VIII
圖目錄 IX
第一章 緒論 - 1 -
1-1 前言 - 1 -
1-2 質子交換膜燃料電池 - 3 -
1-2-1 燃料電池種類 - 3 -
1-2-2 質子交換膜燃料電池之工作原理 - 5 -
1-2-3 質子交換膜燃料電池之各部構造 - 6 -
1-2-4 質子交換膜燃料電池之極化現象 - 10 -
第二章 文獻回顧 - 13 -
2-1燃料電池電堆相關文獻回顧 - 13 -
2-2交流阻抗分析 - 16 -
2-3燃料電池模組化 - 19 -
2-4金屬多孔材與金屬極板之應用 - 20 -
2-5研究動機與目的 - 21 -
第三章 實驗方法 - 22 -
3-1 實驗架構與流程 - 22 -
3-2 拉伸強度量測 - 23 -
3-3 界面壓力量測 - 25 -
3-4 壓降量測 - 27 -
3-5 燃料電池性能測試條件 - 28 -
3-6 電化學交流阻抗頻譜測試 - 30 -
第四章 實驗材料與設備 - 32 -
4-1 燃料電池各部元件 - 32 -
4-1-1 膜電極組 - 32 -
4-1-2 矽膠氣密墊片 - 35 -
4-1-3金屬多孔材 - 35 -
4-1-4 金屬雙極板與流道 - 36 -
4-1-5 模組化機構 - 37 -
4-1-6 端板 - 38 -
4-2 水冷卻系統 - 40 -
4-3 燃料電池性能測試系統 - 41 -
4-4 電化學交流阻抗測試系統 - 44 -
第五章 實驗結果與討論 - 46 -
5-1 拉伸強度測試結果 - 46 -
5-2 模型分析結果 - 50 -
5-3 電池界面壓力測試結果 - 53 -
5-4 壓降量測結果 - 56 -
5-5 電池性能測試結果 - 58 -
5-5-1 改變同加濕溫度對電池性能之影響 - 59 -
5-5-2 改變加濕溫度對電池性能之影響 - 66 -
5-6電化學交流阻抗頻譜測試結果 - 70 -
5-7 電壓均勻性測試結果 - 74 -
5-8 與過往研究比較 - 76 -
第六章 結論與未來方向 - 77 -
6-1 結論 - 77 -
6-2 未來方向 - 78 -
參考文獻 - 79 -
參考文獻

[1] A. Tuvikene, S. Huuskonen, K. Koponen, O. Ritola, U. Mauer, and P. Lindström-Seppä, “Oil shale processing as a source of aquatic pollution: monitoring of the biologic effects in caged and feral freshwater fish,” Environmental Health Perspectives, Vol. 107, pp. 745-752, 1999
[2] C. Y. Liu, C. C. Sung, “A review of the performance and analysis of proton exchange membrane electrode assembles,” Journal of Power Sources, Vol. 220, pp. 348-353, 2012
[3] W. Mitchell Jr., “Fuel Cells a Series of Monographs,” Academic Press., New York, 1963
[4] A. Kumar, R. G. Reddy, “Polymer Electrolyte Membrane Fuel Cell with Metal Foam in the Gas Flow-Field of Bipolar/End Plates,” Journal of New Materials for Electrochemical Systems, Vol 6, pp. 231-236, 2003
[5] Fuel Cell Today (2011). The Fuel Cell Today Industry Review 2011. Technical report, Fuel Cell Today. xv, 5, 6, 11
[6] 蔡秉蒼,「應用金屬發泡材為流道之質子交換膜燃料電池之研究」,國立中央大學機械工程研究所博士論文,2012
[7] R.A. Antunes, M.C.L. Oliveira, G. Ett, V. Ett, “Corrosion of metal bipolar plates for PEM fuel cells: A review,” International Journal of Hydrogen Energy, Vol. 35, pp. 3632-3647, 2010
[8] D. Chu, R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell,” Journal of Power Source, Vol. 80, pp. 226-234, 1999
[9] R. Jiang, D. Chu, “Stack design and performance of polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 93, pp. 25-31, 2001
[10] R. Jiang, D. Chu, “Voltage time behavior of a polymer electrolyte membrane fuel cell stack at constant current discharge,” Journal of Power Sources, Vol. 92, pp. 193-198, 2001
[11] P. Rodatz, F. Büchi, C. Onder, L. Guzzella, “ Operational aspects of a large PEFC stack under practical conditions,” Journal of Power Sources, Vol. 128, pp. 208-217, 2004
[12] F.B. Weng, B.S. Jou, A. Su, S.H. Chan, P.H.Chi, ”Design, fabrication and performance analysis of a 200W PEM fuel cell short stack,” Journal of Power Sources, Vol. 171, pp. 179-185, 2007
[13] W. Schmittinger, A. Vahidi, “A review of the main parameters influencing long-term performance and durability of PEM fuel cells,” Journal of Power Sources, Vol. 180, pp. 1-14, 2008
[14] C.Y. Wen, Y.S. Lin, C.H. Lu, “Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack,” Journal of Power Sources, Vol. 192, pp. 475-485, 2009
[15] S. Asghari, M.H. Shahsamandi, M.R. Ashraf Khorasani, ”Design and manufacturing of end plates of a 5 kW PEM fuel cell, ” International Journal of Hydrogen Energy, Vol. 35, pp. 9291-9297, 2010
[16] Y. Devrim, H. Devrim, I. Eroglu, “Development of 500 W PEM fuel cell stack for portable power generators,” International Journal of Hydrogen Energy, Vol. 40, pp. 7707-7719, 2015
[17] E. Alizadeh, M.M. Barzegari, M. Momenifar, M. Ghadimi, S.H.M. Saadat, “Investigation of contact pressure distribution over the active area of PEM fuel cell stack,” International Journal of Hydrogen Energy, Vol. 41, pp. 3062-3071, 2016
[18] V.A. Paganin, C.L.F. Oliveira, E.A. Ticianelli, T.E. Springer, E.R. Gonzalez, ”Modelisticinterpretation of the impedance response of a polymer electrolyte fuel cell1,” Electrochimica Acta, Vol. 43,
pp. 3761-3766, 1998
[19] M. Eikerling, A. A. Kornyshev, “Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 475, pp. 107-123, 1999
[20] T.J.P. Freire, E.R. Gonzalez, ”Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells,” Journal of Electroanalytical Chemistry, Vol. 503, pp. 57-68, 2001
[21] X. Yuan, J. C. Sun, M. Blanco, H. Wang, J. Zhang, D. P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part I:Stack impedance,” Journal of Power Sources, Vol. 161, pp. 908-928, 2006
[22] X. Yuan, J. C. Sun, M. Blanco, H. Wang, J. Zhang, D. P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part II:Individual cell impedance,” Journal of Power Sources, Vol. 161,
pp. 929-937, 2006
[23] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B.Yi, “AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes,” International Journal of Hydrogen, Vol.32, pp. 4358-4364, 2007
[24] R. Diethelm, J. Brun, B. Barp, “Module for a fuel cell battery,” US Patent No. 5270131A, 1993
[25] S. Elangovan, A. C. Khandkar, J. J. Hartvigsen, “Fuel cell module,” US Patent No. 5480738A, 1996
[26] N. Rajalakshmi, S. Pandiyan, K.S. Dhathathreyan, “Design and development of modular fuel cell stacks for various applications,” Journal of Power Sources, Vol. 33, pp. 449-454, 2008
[27] S. S. Hsieh, C. F. Huang, “Design, fabrication and performance test of a planar array module-type micro fuel cell stack,” Energy Conversion and Management, Vol. 76, pp. 971-979, 2013
[28] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wanga, C.I. Lee, C.C. Yang, S.K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor,” International Journal of Hydrogen Energy, Vol. 37, pp. 13060-13066, 2012
[29] C.J. Tseng, B.T. Tsai, Z.S. Liu, T.C. Cheng, W.C. Chang, S.K. Lo, “A PEM fuel cell with metal foam as flow distributor,” Energy Conversion and Management, Vol. 62, pp. 14-21, 2012
[30] M. S. Hossain, B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 295, pp. 275-291, 2015
[31] S. F. Pollard, “Boatbuilding with Aluminum,” International Marine / Ragged Mountain Press, 1993
[32] N. Dukhan, Ö. Bağcı, M. Özdemir, “Metal foam hydrodynamics: Flow regimes from pre-Darcy to turbulent,” International Journal of Heat and Mass Transfer, Vol. 77, pp. 114-123, 2014
[33] 林亭君,「智慧型輕量化移動載具前瞻技術跨領域專案計畫」,國科會工程處,2011
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2017-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明