博碩士論文 104323069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.141.3.219
姓名 謝煜彬(Yu-Pin Hsieh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 固態氧化物電解電池之電解質材料開發
(Development of Electrolyte Materials for Solid Oxide Electrolysis Cell)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要探討用於高溫離子傳導固態氧化物電解電池的電解質材料
開發,使用常見的釔穩定氧化鋯(YSZ)做為基礎,摻雜二氧化鈦(TiO2)和釤
摻雜氧化鈰(SDC)來製備成電解質,通過不同的煆燒溫度、壓錠壓力、壓錠
時間和燒結溫度來探討電池的微觀結構和機械性質,使用網印法製備出陰
陽極,其陰極材料為鎳-氧化釔穩定氧化鋯(Ni-YSZ),陽極則為鈣鈦礦型氧
化物材料鑭鍶錳(LSM),在陰極端通氫氣陽極端通氧氣進行發電觀察其性能,
最後在陰極端通二氧化碳進行電解並觀察其性能。
本研究發現YSZ 摻雜TiO2 和SDC 後可以降低其燒結溫度,並獲得較
大較完整的晶粒,在預燒溫度在1250 ºC、壓錠壓力294 MPa、壓錠時間5
分鐘、燒結溫度1550 ºC 時可以得到最大晶粒尺寸、平均粒徑為50.38 μm、
維克氏硬度值1183.5 HV、在1000 ºC 時熱膨脹係數為8.25 10-6/K、電池電
解性能在1000 ºC 下電壓1.5 V 時電流密度為631 mA/cm2。
摘要(英) In this study, we investigate the electrolyte materials for high temperature
solid oxide electrolysis cells. The electrolyte is prepared by using yttriumstabilized
zirconia (YSZ) as the basis, doped with titanium dioxide (TiO2) and
samarium doped cerium oxide (SDC). The microstructure and mechanical
properties of the electrolyte are investigated for different pre-sintering
temperature, the uniaxial pressure and pressurized duration for producing pellets,
and sintering temperature.
The cathode and anode are prepared by screen printing. The cathode material
is nickel-yttria stabilized zirconia (Ni-YSZ), and the anode material is lanthanum
strontium manganese (LSM) perovskite material. The cell performance is
measured in power generation mode by supplying hydrogen to Ni–YSZ electrode
and oxygen to LSM electrode. The performance in electrolysis mode is measured
by supplying carbon dioxide to Ni-YSZ electrode.
Results show that YSZ doped TiO2 and SDC can reduce the sintering
temperature. Electrolytes with large grains, averaged at 50.4 μm, can be obtained
using a pre-sintering temperature of 1250 ºC, a pressure of 294 MPa for 5 minutes
for producing pellets, and a sintering temperature of 1550 ºC. In addition, the
thermal expansion coefficient at 1000 ºC is 8.25 10-6 /K, the Vickers hardness
value is 1183.5 HV. The current density of the cell is 631 mA/cm2 at 1.5V and 1000 ºC in the electrolysis mode.
關鍵字(中) ★ 高溫
★ 離子傳導
★ 固態氧化物電解電池
★ 氧化釔穩定氧化鋯
★ 釤摻雜氧化鈰
★ 熱膨脹係數
★ 維克氏硬度值
關鍵字(英) ★ high temperature
★ ionic conductivity
★ solid oxide electrolysis cell
★ yttria-stabilized zirconia
★ samarium doped cerium oxide
★ thermal expansion coefficient
★ Vickers hardness value
論文目次 中文摘要 ................................................................................................................ I
Abstract ................................................................................................................ II
致謝 ..................................................................................................................... IV
目錄 ...................................................................................................................... V
表目錄 .............................................................................................................. VIII
圖目錄 ................................................................................................................. IX
第一章緒論 ........................................................................................................... 1
1.1 前言 ........................................................................................................ 1
1.2 固態氧化物電解電池(SOEC)基本原理 ............................................... 2
1.2.1 固態氧化物燃料電池之工作原理 .............................................. 2
1.2.2 固態氧化物電解電池之工作原理 ............................................. 4
1.2.3 固態氧化物電解電池之熱力學分析 ......................................... 5
第二章文獻回顧 ................................................................................................... 8
2.1 固態氧化物電解電池技術發展沿革 .................................................... 8
2.2 固態氧化物電解電池結構與材料 ...................................................... 10
2.2.1 固態氧化物電解電池結構 ....................................................... 10
2.2.2 固態氧化物電解電池材料 ....................................................... 11
VI
2.3 研究動機 .............................................................................................. 14
第三章實驗方法 ................................................................................................. 15
3.1 實驗儀器設備 ...................................................................................... 15
3.1.1 試片油壓機 ............................................................................... 15
3.1.2 行星式球磨機 ........................................................................... 15
3.1.3 SOEC 測試平台......................................................................... 16
3.2 實驗樣品與流程 .................................................................................. 17
3.2.1 粉末與藥品規格 ....................................................................... 17
3.2.2 粉末製備流程 ........................................................................... 18
3.2.3 全電池製備流程 ....................................................................... 21
3.2.4 燒結速率 ................................................................................... 24
3.3 檢測實驗 .............................................................................................. 25
3.3.1 X 光繞射儀(X-Ray Diffraction, XRD) ..................................... 25
3.3.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) .... 25
3.3.3 熱機械分析儀(Thermomechanical Analysis, TMA) ............... 26
3.3.4 維克氏硬度試驗機(Vickers hardness testing machine) .......... 27
3.3.5 電性分析 ................................................................................... 27
第四章結果與討論 ............................................................................................. 29
4.1 煆燒溫度對晶粒的影響 ....................................................................... 29
VII
4.2 壓錠壓力對晶粒的影響 ...................................................................... 32
4.3 壓錠時間對晶粒的影響 ...................................................................... 34
4.4 燒結溫度對晶粒的影響 ...................................................................... 35
4.5 TiO2 與SDC 對晶粒的影響 ................................................................. 38
4.6 電解質材料對熱膨脹係數與硬度的影響 ........................................... 44
4.7 發電與電解性能分析 .......................................................................... 47
第五章結論與未來工作 ..................................................................................... 50
5.1 結論 ...................................................................................................... 50
5.2 未來工作 .............................................................................................. 51
參考文獻 ............................................................................................................. 52
參考文獻 [1] H. Yano, F. Shirai, M. Nakayama, and K. Ogura, “Electrochemical reduction of CO2 at three-phase ( gas and liquid and solid ) and two-phase ( liquid and solid ) interfaces on Ag electrodes,” J. Electroanal. Chem., vol. 533, pp. 113–118, 2002.
[2] S. D. Ebbesen and M. Mogensen, “Electrolysis of carbon dioxide in solid oxide electrolysis cells,” J. Power Sources, vol. 193, pp. 349–358, 2009.
[3] G. Centi and S. Perathoner, “Opportunities and prospects in the chemical recycling of carbon dioxide to fuels,” Catal. Today, vol. 148, pp. 191–205, 2009.
[4] S. Z. H. Jensen, P. H. Larsen, and M. Mogensen, “Hydrogen and synthetic fuel production from renewable energy sources,” Int. J. Hydrogen Energy, vol. 32, pp. 3253–3257, 2007.
[5] H. S. Spacil and C. S. Tedmon, “Electrochemical dissociation of water vapor in solid oxide electrolyte cells,” J. Electrochem. Soc., vol. 116, pp. 1619–1626, 1969.
[6] W. Donitz, G. Dietrich, E. Erdle, and R. Streicher, “Electrochemical high temperatyre technology for hydrogen production direct electricity generation,” Int. J. Hydrogen Energy, vol. 13, pp. 283–287, 1988.
[7] A. O. Isenberg, “Energy conversion via solid oxide electrochemical cells
53
at high temperature,” Solid State Ionics, vol. 4, pp. 431–437, 1981.
[8] J. E. O. Brien, C. M. Stoots, J. S. Herring, P. A. Lessing, J. J. Hartvigsen, and S. Elangovan, “Performance measurements of solid-oxide electrolysis cells for,” J. Fuel Cell Sci. Technol., vol. 2, pp. 156–163, 2005.
[9] C. Stoots, J. O. Brien, and J. Hartvigsen, “Results of recent high temperature coelectrolysis studies at the Idaho National Laboratory,” Int. J. Hydrogen Energy, vol. 34, pp. 4208–4215, 2009.
[10] X. Zhang, J. E. O. Brien, R. C. O. Brien, J. J. Hartvigsen, G. Tao, and G. K. Housley, “Improved durability of SOEC stacks for high temperature electrolysis,” Int. J. Hydrogen Energy, vol. 38, pp. 20–28, 2012.
[11] J. Schefold, A. Brisse, and F. Tietz, “Nine thousand hours of operation of a solid oxide cell in steam electrolysis mode,” J. Electrochem. Soc., vol. 159, pp. 137–144, 2012.
[12] K. R. Sridhar and B. T. Vaniman, “Oxygen production on Mars using solid oxide electrolysis,” Solid State Ionics, vol. 93, pp. 321–328, 1997.
[13] M. A. Laguna-Bercero, “Recent advances in high temperature electrolysis using solid oxide fuel cells : A review,” J. Power Sources, vol. 203, pp. 4–16, 2012.
[14] M. Jitaru, “Electrochemical carbon dioxide reduction-fundamental and applied topics,” J. Univ. Chem. Technol. Metall., vol. 42, pp. 333–344, 2007.
54
[15] A. Brisse, J. Schefold, and M. Zahid, “High temperature water electrolysis in solid oxide cells,” Int. J. Hydrogen Energy, vol. 33, pp. 5375–5382, 2008.
[16] O. A. Marina et al., “Electrode performance in reversible solid oxide fuel cells,” J. Electrochem. Soc., vol. 154, pp. 452–459, 2007.
[17] W. Wang, Y. Huang, S. Jung, J. M. Vohs, and R. J. Gorte, “A Comparison of LSM , LSF , and LSCo for Solid Oxide Electrolyzer Anodes,” J. Electrochem. Soc., vol. 153, pp. 2066–2070, 2006.
[18] S. Dalgaard, J. Høgh, K. Agersted, and J. Ulrik, “Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis,” Int. J. Hydrogen Energy, vol. 36, pp. 7363–7373, 2011.
[19] C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, “Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 1–23, 2011.
[20] B. Feng, T. Yokoi, A. Kumamoto, M. Yoshiya, Y. Ikuhara, and N. Shibata, “Atomically ordered solute segregation behaviour in an oxide grain boundary,” Nat. Commun., vol. 7, pp. 1–6, 2016.
[21] J. K. Stortelder and I. M. Science, “Ionic conductivity in yttria-stabilized zirconia thin films grown by pulsed laser deposition,” Univerdity of Twente, 2005.
[22] J. W. Fergus, “Electrolytes for solid oxide fuel cells,” J. Power Sources,
55
vol. 162, pp. 30–40, 2006.
[23] M. Mogensen, N. M. Sammes, and G. A. Tompsett, “Physical , chemical and electrochemical properties of pure and doped ceria,” Solid State Ionics, vol. 129, pp. 63–94, 2000.
[24] F. M. L. Figueiredo and F. M. B. Marques, “Electrolytes for solid oxide fuel cells,” WIREs Energy Environ, pp. 1–21, 2012.
[25] B. Zhu, M. Nilsson, and B. Mellander, “Electrolysis studies based on ceria-based composites,” Electrochem. commun., vol. 8, pp. 495–498, 2006.
[26] K. C. Radford and R. J. Bratton, “Zirconia electrolyte cells,” J. Mater. Sci., vol. 14, pp. 59–65, 1979.
[27] J. Richter, P. Holtappels, T. Graule, T. Nakamura, and L. J. Gauckler, “Materials design for perovskite SOFC cathodes,” Monatshefte für Chemie, vol. 140, pp. 985–999, 2009.
[28] B. A. Boukamp, “The amazing perovskite anode,” Nat. Publ. Gr., vol. 2, pp. 294–296, 2003.
[29] A. Hauch, S. H. Jensen, S. Ramousse, and M. Mogensen, “Performance and Durability of Solid Oxide Electrolysis Cells,” J. Electrochem. Soc., vol. 153, pp. 1741–1747, 2006.
[30] S. P. Jiang and S. H. W. A. Chan, “A review of anode materials development in solid oxide fuel cells,” J. Mater. Sci., vol. 39, pp. 4405–
56
4439, 2004.
[31] U. Troitzsch and D. J. Ellis, “High-pt study of solid solutions in the system ZrO2-TiO2: the stability of srilankite,” Eur. J. Mineral, vol. 16, pp. 557-584, 2004.
[32] S. C. Singhal and K. Kendall, “High-temperature solid oxide fuel cells: fundamentals, design and applications,” Elsevier, Amsterdam, 2003.
[33] B. V. R. Chowdari, H. L. Yoo, G. M. Choi and J. H. Lee, “Solid state ionics: the science and technology of ions in motion,” World Scientific, Korea, 2004.
[34] J. Fergus, R. Hui, X. Li, D. P. Wilkinson,J. Zhang, “Solid oxide fuel cells: materials properties and performance,” CRC Press, Florida, 2008.
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2017-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明