博碩士論文 103353017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.17.177.139
姓名 詹琨傑(Kun-Chieh Chan)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 Bi-2.5 Ag無鉛銲料在添加1.0 wt. % In、Sb及Sn 前後之熱熔行為、微結構與性質變化
(Thermal behavior, microstructure and mechanical property of the Bi-2.5 Ag added with 1.0 wt. % In, Sb and Sn)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究在探討Bi-2.5 Ag合金中,藉由分別添加1.0 wt. %之In、Sb及Sn元素,與Cu基材之球格狀陣列(Ball Grid Array, BGA)構裝時,預期能與合金中的Bi元素、Ag元素及基材的Cu元素間生成介金屬化合物,以改善銲接強度發散的問題,進而討論三元合金銲料之熔融行為、顯微組織,接合界面組織與機械性質的變化。
熱熔融結果顯示: Bi-2.5 Ag合金在262.2 ℃有吸熱反應,經添加1.0 wt.% In及Sn元素至Bi-2.5 Ag合金中時,分別出現Bi-In低溫相(109.5 ℃)及Bi-Sn低溫相(138.8 ℃)。至於添加1.0 wt.%Sb後,其熔融溫度反而比Bi-2.5Ag合金升高約1.1℃(即熔融在263.3℃)。
Bi-2.5 Ag-1.0 X (X=In,Sb及Sn)合金與Cu基材經迴銲1~5次後之微結構顯示: Bi-2.5Ag及Bi-2.5Ag-1.0 In合金的銲接點,於接合界面上均未發現介金屬化合物;至於Bi-2.5 Ag-1.0 Sn與Bi-2.5 Ag-1.0 Sb合金在銲接後,於銲點靠近Cu基材之富Bi相基地處,分別形成帶狀Cu3Sn化合物以及帶狀Cu2Sb化合物。
以推球方式量測銲接點之剪切力,結果顯示: Bi-2.5Ag合金在添加1.0 wt.% 之In, Sb 及 Sn等元素後,銲點剪切力及穩定性均有提升效果,剪切力由高至低分別為Bi-2.5 Ag-1.0 In (2.0±0.12mN) > Bi-2.5 Ag-1.0 Sn (1.7±0.18mN) > Bi-2.5 Ag-1.0 Sb(1.5±0.13mN) > Bi-2.5Ag合金(1.4±0.24mN)。經由5次迴銲後,添加Sb元素及Sn元素對於銲點剪切力的提升幅度較為明顯,相較1次迴銲銲點剪切力分別增加40%及35%。
摘要(英)
The motivation of this thesis is to modify the solder joints strength issue when Bi-2.5Ag soldered with Cu pad of ball grid array (BGA) with addition of 1.0 wt.% In, Sb and Sn. Subsequently the melting behavior, microstructure, interface microstructure and mechanical properties of ternary alloys have been discussed.
The thermal analysis shown that, Bi-2.5Ag has a endothermic reaction at 262.2 ℃. After adding of 1.0 wt.% In and Sn, low temperature Bi-In phase (109.5 ℃) and Bi-Sn phase (138.8 ℃) are appeared separately. However after adding of 1.0wt.% Sb, the melting point is increased about 1.1℃ to 263.3℃.
The microstructure of Bi-2.5Ag-1.0X (X=In, Sb, Sn) with Cu pad after multiple reflows shown that, there are no intermetallic compound (IMC) found at Bi-2.5Ag and Bi-2.5Ag-1.0 In joints. For Bi-2.5Ag-1.0Sn and Bi-2.5Ag-1.0 Sb, band-like Cu3Sn and band-like Cu2Sb are found at the interface of the joints.
The solder joints strength had been tested by ball shear test, the result shown that after adding 1.0 wt.% In, Sb and Sn, the shear force and stability had been increased. The order of shear force (from high to low) is Bi-2.5Ag-1.0In (2.0±0.12mN) > Bi-2.5Ag-1.0Sn (1.7±0.18mN) > Bi-2.5 Ag-1.0Sb (1.5±0.13mN) > Bi-2.5Ag (1.4±0.24mN). Comparing the result of 1 time reflow and 5 time reflow, the Sb and Sn addition ternary alloys shown significant enhance, the shear force had been increased 40% and 35% separately.
關鍵字(中) ★ 鉍銀合金
★ 鉍銀高溫銲料
★ 高溫無鉛銲料
關鍵字(英) ★ Bi-Ag alloys
★ Bi-Ag high-temperature solders
★ Pb-free solder for high-temperature
論文目次
摘要 I
ABSTRACT III
誌謝 IV
表目錄 V
圖目錄 VI
反應式目錄 IX
第一章、 前言 1
1-1 研究背景 1
1-2 研究動機 2
1-3 研究目的 3
第二章、 基礎理論與文獻回顧 4
2-1 銲錫材料之無鉛化趨勢及發展 4
2-1-1 高溫無鉛銲料特性需求 5
2-1-2 高溫無鉛銲料發展 6
2-1-3 選擇Bi-2.5Ag 合金替代高溫銲料的原因 9
2-2 Bi-Ag合金性能研究 10
2-3 選擇Bi-2.5Ag-1.0 X (X = In, Sb, Sn 這三個元素)的原因 13
2-4 相平衡圖 14
2-4-1 Bi二元相圖 14
2-4-2 其他二元相圖 18
2-4-3 三元相圖 24
第三章、 研究方法與步驟 26
3-1 Bi-2.5 Ag-1.0 X合金的配製及成份分析 26
3-2 合金潤濕性分析 27
3-3 高溫無鉛銲料球的製備 28
3-4 微差掃描熱量分析 28
3-5 顯微組織觀察與分析 29
3-6 多次迴銲(Multiple reflows)試驗 30
3-7 銲點界面反應研究 30
3-8 銲點之剪切力研究 31
第四章、 結果 38
4-1 Bi-2.5 Ag與Bi-2.5 Ag-1.0 X合金成份確認分析 38
4-2 合金潤濕性分析 38
4-3 合金熔融特性分析 39
4-3-1 Bi-2.5 Ag與Bi-2.5 Ag-1.0 X合金DSC熱分析 39
4-4 顯微結構觀察 47
4-4-1 Bi-2.5 Ag合金顯微結構之SEM觀察與EDS分析 47
4-4-2 Bi-2.5 Ag-1.0 X合金顯微結構之SEM觀察與EDS分析 47
4-5 球格狀陣列構裝之界面反應研究結果 56
4-6 球格狀陣列構裝之銲點剪切力研究結果 66
4-6-1 Bi-2.5 Ag-1.0 X合金銲點之剪切力分析 66
4-6-2 Bi-2.5 Ag-1.0 X合金銲點之剪切力標準差分析 67
4-6-3 Bi-2.5 Ag-1.0 X合金銲點之破斷面分析 68
第五章、 討論 84
第六章、 結論與前瞻 98
參考文獻 101
參考文獻

[1] C. C. Chi, L. C. Tsao, C. W. Tsao, and T. H. Chuang, “Intermetallic Reactions in Reflowed and Aged Sn-58Bi BGA Packages with Au/Ni/Cu Pads”, ASM International, vol. 17(1), pp.134-140, Feb 2008.
[2] Electronic Assembly Development Center, Hewlett Packard Company, and
Palo Alto. “Microstructure and Mechanical Properties of Pb-Free Solder
Alloys for Low-Cost Electronic Assembly: A Review”, Journal of Electronic Materials, vol. 23, No.8, 1994.
[3] C. Kanchanomai,Y. Miyashita, and Y. Mutoh, “Low-Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi Lead-Free Solders”, Journal of Electronic Materials, vol. 31, No. 5, 2002.
[4] J. M. Song, H. Yi. Chuang and T. X. Wen, “Thermal and Tensile Properties of Bi-Ag Alloys”, Metallurgical and Materials Transactions A, vol. 38A, pp. 1371-1375, Jan 2007.
[5] 馬良、尹立孟、冼健威和張新平,「高溫電子封裝無鉛化的研究進展」,
銲接技術專題,第38卷,第五期,6~10頁,2009年5月。
[6] Katsuaki S., S. J. Kim, and K. S. Kim, “High-Temperature Lead-Free Solders : Properties and Possibilities”, JOM., vol.61, No.1, pp. 64-71, Jan 2009.
[7] G. Zeng, S. McDonald, and K. Nogita, “Development of high-temperature solders: Review. Microelectronics Reliability”, Microelectronics Reliability , vol.52, pp. 1306-1322, Mar 2012.
[8] J. H. Kim, S. W. Jeong, and H. M. Lee, “Special Issue on Lead-Free Electronics Packaging”, Materials Transactions,vol 43,pp.1873-1878 ,2002.

[9] L. N. Lalena, M. W. Weiser, and N. F. Dean, 131th TMS meeting. , Seattle, Washington, Feb.19, 2002.
[10] L. N. Lalena, N. F. Dean, and M. W. Weiser, “ Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attachment”, J Electro. Mater., vol. 31, No.11, pp. 1244-1249, Nov 2002.
[11] M. Holtzer, The 5th Annual Strategic Sμmmit for LEDs in Illμmination, San Diego. Oct. 20-22, 2004.
[12] J. M. Song, H. Y. Chuang, Z. M. Wu, “Interfacial Reactions between Bi-Ag High-Temperature Solders and Metallic Substrates”, J Electro. Mater., vol. 35, No. 5, pp. 1041-1049, Jan 2006.
[13] European Union Waste in Electrical and Electronic Equipment(WEEE) Directive, 3rd Draft, May 2000.
[14] 房衛萍、史耀武、夏志東、郭福和雷永平,「電子組裝用高溫無鉛銲料的研究進展」,電子元件與材料,第28卷第3期,71~74頁,2009年3月。
[15] 蔡齊航,「高溫無鉛銲料電化學腐蝕及氧化行為研究」,國立東華大學材料科學與工程研究所碩士論文,2010年。
[16] D. G. Ivey, “Microstructural Characterization of Au/Sn Solder for Packaging in Optoelectronic Applications”, Elsevier Micron,vol. 29 , No.4, pp281-287, Sep 1997.
[17] 劉澤、陳登權、羅錫明和許昆,「微電子封裝用金錫合金銲料」,貴金屬,第26卷,第1期,2005年。
[18] J. S. Kim, W. S. Choi,and D. Kim. et al., “Fluxless silicon-to-alμmina bonding using electroplated Au–Sn–Au structure at eutectic composition“, Materials Science and Engineering A, vol. 458, Iss. 1-2, Jun 2007.
[19] J. W. R. Teo, F. L. Ng ,and L. S. K. Goi, “Microstructure of eutectic 80Au/20Sn solder joint in laser diode package. Microelectronic Engineering“, Microelectronic Engineering, vol. 85, pp.512-517, Oct 2008.
[20] S. Kim, K. S. Kim,and S. S. Kim et al., “Interfacial Reaction and Die Attach Properties of Zn-Sn High-Temperature Solders“, Electronic Materials, vol. 38, No.2, pp.266-272, Sep 2008.
[21] S. A. Musa, M. A. A. M. Salleh, and N. Saud,“Zn-Sn Based High Temperature Solder - A Short Review“, Advanced Materials Research, vol. 795, pp.518-521, 2013.
[22] J. E. Lee, K. S. Kim, and K. Suganμma et al., “Thermal Properties and Phase Stability of Zn-Sn and Zn-In Alloys as High Temperature Lead-Free Solder“, Materials Transactions, vol.48, No.3, pp.584-593, Feb 2007.
[23] J. E. Lee, K. S. Kim, and K.Suganμma et al., “Interfacial Properties of Zn–Sn Alloys as High Temperature Lead-Free Solder on Cu Substrate“, Materials Transactions, vol.46, No.11, pp.2413-2418, Nov 2005.
[24] M. Rettenmayr, P. Lambracht, B. Kempf et al., “High melting pb-free solder alloys for die attach applications“, Advancced Engineering Materials, vol. 7, No.10 , pp.965-969, 2005.
[25] 宋振銘,莊鑫毅,吳宗謀和李國瑋, 「新型LED晶片接合無鉛銲料開發」,真空科技,第十八卷,第四期,8~14頁,2006年。
[26] H. Okamoto, M. E. Schlesinger, and E. M. Mueller, M., “Alloy Phase Diagrams“, ASM Handbook, vol. 3, 2016.

[27] S. Hassam, Z. Bahari, and B.Legendre, “Phase diagram of the Ag–Bi–Sb ternary system“, Alloys and Compounds, vol. 315, pp.211-217, Oct 2000.
[28] Jedec Solid State Technology Association, “Solder Ball Shear Of Jedec
Standard“, Revision of JESD22-B117B, May 2014.
[29] S. Y. Chang, L. C. Taso, and M. W. Wu, “The morphology and kinetic evolution of intermetallic compounds at Sn–Ag–Cu solder/Cu and Sn–Ag–Cu-0.5Al2O3 composite solder/Cu interface during soldering reaction“, J Mater Sci., vol.23, pp.100-107, 2012.
[30] L. N. Ramanathan, J. W. Jang, and J. K. Lin et al., “Solid-state annealing behavior of two high-Pb solders, 95Pb5Sn and 90Pb10Sn, on Cu under bμmp metallurgy“, Electronic Materials, vol. 34, No. 10, pp.43-46, 2005.
[31] J. Y. Wang, C. F. Lin, and C. M. Chen, “Interfacial Reactions and Mechanical Properties of Bi-x wt.%Sn/Cu Joints (x=2,5,10)“, Journal of Electronic Materials, Vol. 41, No. 12, Augest 2012.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2017-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明