博碩士論文 986404001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.129.253.65
姓名 林佩瑩(Pei-Ying Lin)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 地下水流場之綜合評估與應用:以新竹尖石井場為例
(Estimating regional groundwater recharge from fluctuations of groundwater level, well yields and multiple hydrogeochemical and isotopic methods at a well field near Chien- Shih area, Hsinchu, Taiwan)
相關論文
★ 有機質成熟度之染色技術應用★ 臺灣中新世石底層煤中硫及微量元素含量之沉積涵義
★ 煤素質組成對熱裂分析之影響★ 大屯火山群地熱氣與溫泉水之地化特性
★ 灰關聯分析於水庫水質綜合評判之研究 —以翡翠及石門水庫為例★ 土石流誘發因子萃取對土石流危險溪流判定之影響
★ 石油系統之有機材料與熱成熟度特性探討★ 石油系統有機材料特性及熱成熟度與油氣潛能之關係探討:以澳洲西北海域為例
★ 車籠埔斷層深鑽岩心鏡煤素反射率研究★ 從岩石風化速率探討南橫山崩 -以敏督莉颱風為例
★ 廢棄礦場環境影響綜合評估★ 河流縱剖面與構造地形指標之量化分析: 以濁水溪為例
★ 九份-金瓜石地區火成作用對有機物成熟度之影響★ 不同成熟度之有機成分探討
★ 石門水庫上游集水區水質與復興鄉人文環境之綜合研究★ 鏡煤素反射率抑制問題與熱模擬之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 根據德國Kassel大學環境系統研究中心統計之全球水文資料顯示台灣被歸類為缺水地區,台灣每年每人平均可使用之水資源 (4,074m3/yr) 僅有全世界平均值的五分之一 (21,796m3/yr) ,因此在台灣之特定區域、山區以及乾旱季節,地下水被視為重要的水資源。台灣平均年降雨量約為2500 毫米,但是伴隨著季節、地點與高程的不同,降雨量也隨之變化,又因地形陡峭以至於水不易儲存,若能推估準確且合理之補注來源,不但能有效應用地下水資源及避免資源耗竭,亦可瞭解地下水之逕流補注機制。本研究主要以三個項目進行討論:(1)監測地下水位歷線,包含抽水前後之變化反應、(2)分析地下水水質特性與同位素,以質量守恆計算評估地下水補注來源、(3)綜合比較研究區域內之雨水、地表水(河水與山坡滲水)特性。為釐清乾濕季之補注情況分別不同時期於N井進行抽水採樣,抽水期間收集特定時間之N、S和C井水樣分析氧同位素,亦即在不外加示蹤劑情況下,利用各種可能補注來源之氧同位素推估井場之補注來源與分量。為達到有效管理特定區域地下水目的,以瞭解地下水之遲滯時間則為保護水源及地下水流場評估之應用。根據同位素質量守恆之計算結果可知研究區域內山坡滲水以雨水為主要補注來源(13.7-46.3%),而河水之補注來源除雨水外(11.9-16.7%),顯示仍有其他穩定來源。在雨季,研究區域之地下水以集水區之山坡滲水為主要補注來源(71-100%),其次為河水(0-86%)和雨水(0-32%);在乾季,研究區域之地下水以集水區之山坡滲水為主要補注來源(44-100%),其次為河水(11-88%)和雨水(0-31%)。為整合相關水文地質資訊,將地下水同位素資料結合過去檢測地球化學之相關數據、地質剖面資料與地區天水線用以建立研究區域之地下水流場概念模式以探討水來源及流徑。
摘要(英) Based on global hydrological data, the Center for Environmental Systems Research, University of Kassel, Germany, classified Taiwan as an area of water shortage. Water resources per capita in Taiwan (4,074m3/yr) are only one fifth of the world average (21,796m3/yr). In some regions and particularly during dry periods, groundwater is the only reliable water resource in Taiwan. This is particularly true for mountain regions. Estimating groundwater recharge is a key component in determining the potential yield and sustainable management of groundwater resources. The research presented here consists of three components: (a) groundwater level monitoring and pumping samplings; (b) assessment of groundwater composition and mass-balance based identification of recharge sources; (c) comparison of groundwater composition with surface water (spring and river) in the region. We established a monitoring network for groundwater levels at five wells located at the NCU Research well field near Chien-Shih area, Hsinchu. Moreover, groundwater was sampled at specific time intervals during a pumping sampling. Nearby river and spring water were also collected before and after pumping samplings. Stable oxygen isotopes of water samples were then analyzed. For the purpose of regional groundwater management, knowledge about the residence time of groundwater is an important parameter for planning groundwater protection and improvement measures. According to calculations based on mass-balance equations, the contribution of recharge from precipitation was much higher in spring water (13.7-46.3%) than in river (11.9-16.7%). In rainy season, the springs (71-100%) from the catchment in the study area is the major recharge source of groundwater than river (0-86%) and precipitation (0-32%). In dry season, the springs (44-100%) from the catchment in the study area is the major recharge source of groundwater than river (11-88%) and precipitation (0-31%). Finally, the isotopic data were compared with past geochemical characteristics of aquifer and local meteoric water line (LMWL) in Chien-Shih area. The research results provide insights into the recharge mechanism of the well field, in particular the sources and pathways of recharge.
關鍵字(中) ★ 地下水
★ 同位素
★ 水位
★ 抽水採樣
★ 補注
★ 遲滯時間
關鍵字(英) ★ Groundwater
★ Isotope
★ Water Table
★ Pumping Sampling
★ Conceptual Model
★ Recharge,
論文目次 Contents
Abstract i
摘要 ii
誌謝 iii
Contents iv
List of Figures vi
List of Tables x
1. Introduction 1
1.1 Water resources in Taiwan: the role of groundwater 1
1.2 Study Area: Chien-Shih area, Hsinchu, Taiwan 4
1.3 The methods of groundwater investigations 5
1.4 Applications in flow path of groundwater 6
1.5 Objectives 7
1.6 The framework of study 8
2. Literature review 10
2.1 Groundwater investigation 10
2.1.1 Drilling and construction works 11
2.1.2 Geophysical measurements 13
2.1.3 Hydraulic methods 16
2.1.4 Hydrochemical investigations 19
2.2 Applications in flow path of groundwater 22
2.2.1 Case Study in Asia 23
2.2.2 Case Study in Europe 25
2.2.3 Case Study in North / South America 30
2.2.4 Case Study in other regions 34
2.3 Regional geology of Chien-Shih area, Hsinchu, Taiwan 39
2.3.1 Geology and topography 39
2.3.2 Climate condition and local meteoric water line 41
2.3.3 The background of well field and data logging 43
2.3.4 Previous studies of the NCU Research well field near Chien-Shih area 45
3. Sampling and analytical methods 65
3.1 Procedures of study 65
3.2 Pumping sampling 66
3.3 Sampling locations 68
3.3.1 Sampling locations of meteoric water 68
3.3.2 Sampling locations of surface water 68
3.3.3 Sampling locations of groundwater 68
3.4 Sampling procedures 70
3.5 Analytical methods 71
3.6 Modeling of Interactive Groundwater Water 71
4. Results and discussion 72
4.1 Hydrographs 72
4.2 General geochemical signatures of waters in the study area 74
4.3 Stable oxygen isotope of waters from different sources in the study area 76
4.4 Pumping sampling 81
4.5 Recharge sources and flow path 88
4.6 Conceptual model of flow system 91
5. Conclusions 93
References 95
Appendix 103
A.1 Analytical methods 103
A.1.1 pH value 103
A.1.2 Electrical conductivity 104
A.1.3 Oxygen isotope 104
A.1.4 Hydrogen isotope 106
A.1.5 On-site monitoring parameters: temperature, water table 108
A.2 Modeling of Interactive Groundwater Water 110
A.2.1 Flow equation 110
A.2.2 Transport equation 111
參考文獻

References
Abesser C, Lewis MA, Marchant AP, Hulbert AG (2014) Mapping suitability for open-loop ground source heat pump systems: a screening tool for England and Wales, UK. Quarterly Journal of Engineering Geology and Hydrogeology 47: 373-380.
Adams S, Titus R, Pietersen K, Tredoux G, Harris C (2001) Hydrochemical characteristics of aquifers near Sutherland in western Karoo, South Africa. J Hydrol 241:91-103.
Alberto WD, Del Pilar DM, Valeria AM, Fabiana PS, Cecilia HA, De Los Angeles BM (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquıa River Basin (Cordoba-Argentina). Water Res 35:2881-2894.
Alcamo J, Döll P, Kaspar F, Siebert S (1997) Global change and global scenarios of water use and availability: an application of water GAP1.0. Report A9701. Center for Environmental Systems Research (CESR), University of Kassel, Germany.
Aller L, Bennett T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeological Settings. EPA-600/2-87-035. Washington, DC: EPA.
Appelo C, Postma D (1993) Groundwater and Pollution. Rotterdam: Balkema.
Barbieri M, Boschetti T, Petitta M, Marco T (2005) Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Appl Geochem 20:2063-2081.
Barth JAC, Stichler W, Bergemann M, Reincke H (2006) Can conductivity and stable isotope tracers determine water sources during flooding? An example from the Elbe River in 2002. International Journal of River Basin Management 4: 77-83, DOI: 10.1080/15715124.2006.9635278.
Bekesi G, McConchie J (1999) Groundwater recharge modeling using the Monte Carlo technique, Manawatu region, New Zealand. J Hydrol 224:137-148.
Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater - A case study: Ain Azel plain (Algeria). Geoderma 159:390-398.
Bogaard T, Guglielmi Y, Marc V, Emblanch C, Bertrand C, Mudry J (2007) Hydrogeochemistry in landslide research: a review. Bull Soc Geol Fr 2:113-126.



Burns DA (2002) Stormflow hydrography separation based on isotopes: the thrill is gone - what’s next? Hydrol Processes 16:1515-1517.
Chang KW (2009) A preliminary study of hydrogeochemical indicator of slope movement in Chien-Shih area, Shinchu. National Central University thesis.
Chang SC, Lin TH, Lee CT (2009) On-road emission factors from light-duty vehicles measured in Hsuehshan Tunnel (12.9 km), the longest tunnel in Asia. Environ Monit Assess 153:187-200.
Chapman JB, Lewis B, Litus G (2003) Chemical and isotopic evaluation of water sources to the fens of South Park, Colorado. Environ Geol 43:533-545.
Chen CS, Sie YC, Lin YT (2012) A Review of the Multilevel Slug Test for Characterizing Aquifer Heterogeneity. Terr. Atmos. Ocean. Sci. 23: 131-143, DOI: 10.3319/TAO.2011.10.03.01.
Chen CS, Wu CR (2006) Analysis of Depth-Dependent Pressure Head of Slug Tests in Highly Permeable Aquifers. Ground Water 44: 472-477.
Cheung K, Klassen P, Mayer B, Goodarzi F, Aravena R (2010) Major ion and isotope geochemistry of fluids and gases from coalbed methane and shallow groundwater wells in Alberta, Canada. Appl Geochem 25:1307-1329.
Choi BY, Yun ST, Mayer B, Chae GT, Kim KH, Kim K (2010) Identification of groundwater recharge sources and processes in a heterogeneous alluvial aquifer: results from multi-level monitoring of hydrochemistry and environmental isotopes in a riverside agricultural area in Korea. Hydrol Process 24:317-330.
Chu IT (2011) A comprehensive study of groundwater flow path in Jianshih well field. National Central University thesis.
Clark ID, Fritz P (1997) Environmental Isotopes in Hydrogeology. Boca Raton: Lewis Publishers.
Coleman ML, Shepherd TJ, Durham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993-995.
Craig H (1961) Isotopic Variations in Meteoric Waters. Science 133: 1702-1703.
Dinkel R, Rothschink P, Osberghaus T, Denzel S, Ertel T (2009) Groundwater Investigation Strategy. State Institute for Environment, Measurements and Nature Conservation Baden-Wuerttemberg.
Dogramaci S, Skrzypek G (2015) Unravelling sources of solutes in groundwater of an ancient landscape in NW Australia using stable Sr, H and O isotopes. Chemical Geology 393: 67-78.
Environmental Protection Administration Executive Yuan, R.O.C. Taiwan, “Evaluation of Sampling and Field - Filtration Method for the Analysis of Trace Metals in Groundwater NIEA W103.53B”.
Environmental Protection Administration Executive Yuan, R.O.C. Taiwan, “Environmental Investigations Standard Operating Procedures and Quality Assurance Manual NIEA W104.51C”.
Environmental Protection Administration Executive Yuan, R.O.C. Taiwan, “EPA Requirements for Quality Management Plans NIEA W102.50C”.
Epstein S, Mayeda T (1953) Variation of O-18 content of waters from natural sources. Geochim Cosmochim Acta 4:213-224.
Gammons CH, Poulson SR, Pellicori DA, Reed PJ, Roesler AJ, Petrescu EM (2007) The hydrogen and oxygen isotopic composition of precipitation, evaporated mine water, and river water in Montana, USA. J Hydrol 328:319-330.
Gates JB, Edmunds WM, Darling WG, Ma J, Pang Z, Young AA (2008) Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers. Applied Geochemistry 23: 3519-3534. DOI: 10.1016/j.apgeochem.2008.07.019
Genereux DP, Hooper RP (1998) Oxygen and hydrogen isotopes in rainfall-runoff studies. In: Kendall C and McDonnell JJ (ed) Isotope in Tracers in Catchment Hydrology. Amsterdam: Elsevier, pp 203-246
Gross EL (2008) A manual pumping test method for characterizing the productivity of drilled wells equipped with rope pumps. Master Thesis, Michigan Technological University.
Guglielmi Y, Vengeon JM, Bertrand C, Mudry J, Follacci JP, Giraud A (2002) Hydrogeochemistry: an investigation tool to evaluate infiltration into large moving rock masses (case study of La Clapie`re and Se´chilienne alpine landslides). Bull Eng Geol Environ 61:311-324.
Gurrieri JT, Furniss G (2004) Estimation of groundwater exchange in alpine lakes using non-steady mass-balance methods. J Hydrol 297:187-208.
Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pissuerga River, Spain) by principal component analysis. Water Res 34:807-816.
Huang CS, Yang SY, Yeh HD (2014) Groundwater flow to a pumping well in a sloping fault zone unconfined aquifer. Water Resour. Res. 50: 4079-4094, DOI:10.1002/2013WR014212.
Hvorslev MJ (1951) Time Lag and Soil Permeability in Ground-Water Observations. Bull. No. 36, Waterways Exper. Sta. Corps of Engrs, U.S. Army, Vicksburg, Mississippi, pp. 1-50.
IAEA/WMO (2001). Global Network for Isotopes in Precipitation. The GNIP Database. Accessible at: http://isohis.iaea.org.
International Atomic Energy Agency, 1983. International Atomic Energy Agency guidebook on nuclear techniques in hydrology. Location: Bernan Associates.
Join JL, Coudray J, Longworth K (1997) Using principal components analysis and Na/Cl ratios to trace groundwater circulation in a volcanic island: the example of reunion. J Hydrol 190:1-18.
Kalbus E, Reinstorf F, Schirmer M (2006) Measuring groundwater-surface water interactions: a review. Hydrol. Earth Syst. Sci. 10: 873-887.
Kendall C, Coplen TB (2001) Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Process 15:1363-1393.
Ladouche B, Probst A, Viville D, Idir S, Baqué D, Loubet M, Probst JL, Bariac T (2001) Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France). Journal of Hydrology 242: 255-274.
Li P, Qian H, and Wu J (2014) Comparison of three methods of hydrogeological parameter estimation in leaky aquifers using transient flow pumping tests. Hydrol. Process. 28: 2293-2301, DOI: 10.1002/hyp.9803.
Li Q, Xing Z, Danielescu S, Li S, Jiang Y, Meng FR (2014) Data requirements for using combined conductivity mass balance and recursive digital filter method to estimate groundwater recharge in a small watershed, New Brunswick, Canada. Journal of Hydrology 511: 658-664.
Lin PY (2009) The relation between geochemical characteristics and landslide in Hungtsaiping area, Nantou, Taiwan. National Central University thesis.
Lin PY, Tsai LL (2012) A hydrochemical study of Hungtsaiping landslide area, Nantou, Taiwan. Environ Earth Sci 67:1045-1060. doi:10.1007/s12665-012-1564-8.
Lin PY, Tsai LL (2012) Estimating regional groundwater recharge from fluctuations of groundwater level, oxygen isotope and well yields at a well field near Chien-Shih area, Shinchu, Taiwan. 34th International Geological Congress (IGC).
Lin YB, Lin YP, Liu CW, Tan YC (2006) Mapping of spatial multi-scale sources of arsenic variation in groundwater on ChiaNan floodplain of Taiwan. Sci Total Environ 370:168-181.
Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a black foot disease area in Taiwan. Sci Total Environ 313:77-89.
Liu TK, Chen CH, Yang TF, Lee M (2005) Tritium Concentrations and Radiocarbon Ages of Gushing Groundwater from Hsuehshan Tunnel, Northern Taiwan. Terres Atmos Oceanic Sci 14:909-917.
Liu Y, Yamanak T (2012) Tracing groundwater recharge sources in a mountain–plain transitional area using stable isotopes and hydrochemistry. Journal of Hydrology 464: 116-126.
Locsey KL, Cox ME (2003) Statistical and hydrochemical methods to compare basaltand basement rock-hosted groundwaters: Atheron Tablelands, northeastern Australia. Environ Geol 43:698-713.
Lu HY, Peng TR, Liu TK, Wang CH, Huang CC (2006) Study of stable isotope for highly deformed aquifers in the Hsinchu-Miaoli area, Taiwan. Environ Geol 50:885-898.
Lundqvist J, Gleick PH (1997) Sustaining our waters into the 21st century. Stockholm Environment Institute, for the United Nations. Stockholm, Sweden.
Macphersona GL, Sophocleousb M (2004) Fast ground-water mixing and basal recharge in an unconfined, alluvial aquifer, Konza LTER Site, Northeastern Kansas. J Hydrol 286:271-299.
Mahlknecht J, Gárfias-Solis J, Aravena R, Tesch R (2006) Geochemical and isotopic investigations on groundwater residence time and flow in the Independence Basin, Mexico. Journal of Hydrology 324: 283-300, DOI: 10.1016/j.jhydrol.2005.09.021
Manickum T, John W, Terry S, Hodgson K (2014) Preliminary study on the radiological and physicochemical quality of the Umgeni Water catchments and drinking water sources in KwaZulu-Natal, South Africa. Journal of Environmental Radioactivity 137: 227-240.
Maréchal JC, Etcheverry D (2003) The use of 3H and 18O tracers to characterize water inflows in Alpine tunnels. Appl Geochem 18:339-351.
Marín AI, Ravbar N, Kovačič G, Andreo B, Petrič M (2014) Application of Methods for Resource and Source Vulnerability Mapping in the Orehek Karst Aquifer, SW Slovenia. In: Mudry, J., Zwahlen, F., Bertrand, C., LaMoreaux, J.W. (Eds.), H2Karst research in limestone hydrogeology. Environ. Earth Sci. 139-150, DOI: 10.1007/978-3-319-06139-9_10.
Maurya AS, Shah M, Deshpande RD, Bhardwaj RM, Prasad A, Gupta SK (2011) Hydrograph separation and precipitation source identification using stable water isotopes and conductivity: River Ganga at Himalayan foothills. Hydrol. Process.: 25 1521-1530.




Montety VD, Marc V, Emblanch C, Malet JP, Bertrand C, Maquaire O (2007) Identifying the origin of groundwater and flow processes in complex landslides affecting black marls: insights from a hydrochemical survey. Earth Surf Processes Landforms 32:32-48.
Moravec BG, Keller CK, Smith JL, Allen-King RM, Goodwin AJ, Fairley JP, Larson PB (2010) Oxygen-18 dynamics in precipitation and streamflow in a semi-arid agricultural watershed, Eastern Washington, USA. Hydrol. Process. 24: 446-460.
Muchingami I, Hlatywayo DJ, Nel JM, Chuma C (2012) Electrical resistivity survey for groundwater investigations and shallow subsurface evaluation of the basaltic-greenstone formation of the urban Bulawayo aquifer. Physics and Chemistry of the Earth 50: 44-51.
Nath B, Jean JS, Lee MK, Yang HJ, Liu CC (2008) Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: Possible sources and reactive transport of arsenic. J Contam Hydrol 99:85-96.
Ochsenkuehn KM, Kontoyannakos J, Ochsenkuehn PM (1997) A new approach to a hydrochemical study of groundwater flow. J Hydrol 194:64-75.
Pellicori DA, Gammons CH, Poulson SR (2005) Geochemistry and stable isotope composition of the Berkeley pit lake and surrounding mine waters, Butte, Montana. Appl Geochem 20:2116-2137.
Peng TR, Liu TS, Chen CT (2001) Hydrochemical Evolution of Groundwaters in the Lan-Yang Plain, Taiwan. Taiwanese Journal of Agricultural Chemistry and Food Science 29: 423-458.
Peng TR, Lu WC, Chen KY, Zhan WJ, Liu TK (2014) Groundwater-recharge connectivity between a hills-and-plains’ area of western Taiwan using water isotopes and electrical conductivity. Journal of Hydrology 517: 226-235.
Peng TR, Wang CH (2008) Identification of sources and causes of leakage on a zoned earth dam in northern Taiwan: Hydrological and isotopic evidence. Appl Geochem 23:2438-2451.
Peng TR, Wang CH, Huang CC, Fei LY, Arthur Chen CT, Hwong JL (2010) Stable isotopic characteristic of Taiwan’s precipitation: A case study of western Pacific monsoon region. Earth Planet Sci Lett 289:357-366.
Peng TR, Wang CH, Lai TC, Ho SK (2007) Using hydrogen, oxygen, and tritium isotopes to identify the hydrological factors contributing to landslides in a mountainous area, central Taiwan. Environ Geol 52:1617-1629.





Peng TR, Wang CH, Liu TS, Houng YL (2002) Environmental and hydrological implications revealed by hydrogen and oxygen isotope compositions for the watershed of the Wuchi system in the Nantou area. J Agric Food Chem 40:238-253.
Pereira HG, Renca S, Sataiva J (2003) A case study on geochemical anomaly identification through principal component analysis supplementary projection. Appl Geochem 18:37-44.
Londoño OMQ, Martínez DE, Dapeña C, Massone H (2008) Hydrogeochemistry and isotope analyses used to determine groundwater recharge and flow in low-gradient catchments of the province of Buenos Aires, Argentina. Hydrogeology Journal 16: 1113-1127, DOI: 10.1007 /s10040-008-0289-y.
Robert MD (2009) Structural geology controls on groundwater flow: Lembang Fault case study, West Java, Indonesia. J Hydrol 17:1011-1023.
Roesler AJ, Gammons CH, Druschel GK, Oduro H, Poulson SR (2007) Geochemistry of flooded underground mine workings influenced by bacterial sulfate reduction. Appl Geochem 12:211-235.
Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal 10: 18-39, DOI: 10.1007/s10040-0010176-2.
Schwede RL, Li W, Leven C, Cirpka OA (2014) Three-dimensional geostatistical inversion of synthetic tomographic pumping and heat-tracer tests in a nested-cell setup. Advances in Water Resources 63: 77-90.
Shapiro AM, Hsieh PA, Haeni FP (1999) Integrating multidisciplinary investigations in the characterization of fractured rock. In: Morganwalp DW and Buxton HT (ed) U.S. Geological Survey Toxic Substances Hydrology Program-Proceedings of the Technical Meeting, Charleston, South Carolina, pp 669-680.
Sheng YY (2010) Temporal and Spacial hydrochemistry studies at Jiashih, Hsinchu area. National Central University thesis.
Sklash MG (1990) Environmental isotope studies of storm and snowmelt runoff generation. In: Anderson MG and Burt TP (ed), Process Studies in Hillslope Hydrology. Chichester: John Wiley, pp 401-435.
Smerdon BD, Allen DM, Grasby SE, Berg MA (2009) An approach for predicting groundwater recharge in mountainous watersheds. J Hydrol 365:156-172.
Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeology Journal 10: 52-67, DOI: 10.1007/s10040-001-0170-8.
Todd DK (1959) Groundwater hydrology. London: Wiley.
Tu MK, Chen WC (1991) Explanatory text of the geological map of Taiwan - Chutung sheet. Central Geological Survey. Location: Taiwan.
United States Department of Agriculture (2010) Chapter 31 Groundwater Investigations National Engineering Handbook Part 631 - Geology.
Walton-Day K, Poeter E (2009) Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs. Appl Geochem 24:2266-2282.
Wang CH, Kuo CH, Peng TR, Chen WF, Liu TK, Chiang CJ (2001) Isotope characteristics of Taiwan groundwaters. West Pacif Earth Sci 1:415-428.
Wang CH, Peng TR (2001) Hydrogen and oxygen isotopic compositions of Taipei precipitation: 1990-1998. West Pacif Earth Sci 1:429-442.
Wang Y, Ma T, Luo Z (2001) Geostatistical and geochemical analysis of surface water leakage into groundwater on regional scale: a case study in the Liulin karst system, northwestern China. J Hydrol 246:223-234.
Warner NR, Kresse TM, Hays PD, Down A, Karr JD, Jackson RB, Vengosh A (2013) Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas. Appl Geochem 35:207-220.
Weitz J, Demlie M (2014) Conceptual modelling of groundwater–surface water interactions in the Lake Sibayi Catchment, Eastern South Africa. Journal of African Earth Sciences 99: 613-624.
Wireman M (2003) Characterization of ground-water resources in fractured-rock hydrogeologic settings. Ground Water Monit Rem 23:34-40.
指導教授 蔡龍珆(Louis Loung-Yie Tsai) 審核日期 2017-5-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明