博碩士論文 104323032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.145.66.215
姓名 陳俊佑(Chun-Yu Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 近場電紡織壓電纖維製作與智能無電池式聲音感測元件應用
(An intelligent and self-powered sound-sensing elements based on near-field electrospun piezoelectric fibers)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用近場電紡織技術(near-field electrospinning,NFES),研究壓電奈米纖維並且製作成奈米發電機(nanogenetator,NG)/形變感測器,此技術在現今仍就是一項新穎的技術,此研究以直寫(Direct -write)方式將具有高度壓電性能的高分子材料聚偏氟乙烯(polyvinylidene fluoride,PVDF)利用近場電紡織技術與XY精密位移平台將奈微米纖維(nano /micro fibers,NMFs )精確的排列在可撓性基底上製作成壓電奈米發電機,並且進行一系列訊號量測與驗證。其一研究繼承實驗室之過往實驗,以印刷紙沉積壓電纖維,探討纖維性能並製成智能無電池式聲音感測元件(Intelligent and self-powered sound-sensing elements,ISSEs),用以量測人體喉頭與音響所產生之動作與震動,而後我們結合了靜電發電機與壓電發電機做出綠能發電器,並採用具微米結構之塑膠片提高靜電與壓電效應輸出,成功讓混能式發電機有更高的輸出功率與適應性,並將其應用在收集再生能源上,與較常用之太陽能不同,此次收集風力能與水力(雨)能來轉換為電能,未來可望在穿戴式裝置與再生能發電裝置上有著很好的發展潛力。
摘要(英) In this paper, Near-field electrospinning (NFES) technology has studied and used to deposit the nano/micro fibers on the different base, then made into nano generator (NG) / deformation sensor, this technology is still a novel technology. In this study, polyvinylidene fluoride (PVDF), a polymer material with high piezoelectric properties, was deposited and accurately arranged on a flexible substrate by direct-write method using near-field electrospinning technology and XY precision motion stage as a piezoelectric nano-generator. Then use the sample to perform a series of signal measurements and verification. One of the research continued the past experiments in the laboratory, depositing piezoelectric nano/micro fibers on the printing paper to investigate fiber properties and came to an Intelligent and self-powered sound-sensing elements, (ISSEs), Used to measure the action and vibration produced by human throat and loudspeaker. In another study, experiment use the plastic film witch has an unique micro-structure to improve the electrostatic and piezoelectric effect output to increase the hybrid generator’s output power and adaptability, and its application in the collection of renewable energy combined the electrostatic generators and piezoelectric generators as a green energy collectors. The use of micro-structure of the plastic film improve the electrostatic and piezoelectric effect output, the success of the hybrid generator more high output power and adaptability, and its application in the collection of renewable energy. The collection of wind and water (rain) can be converted into electrical energy. Wearable devices and renewable energy collection devices has a very good development potential in the future.
關鍵字(中) ★ 近場電紡織技術
★ 微/奈米纖維
★ 聚偏氟乙烯
★ 無電池式聲音感測元件
★ 綠能發電器
關鍵字(英) ★ self-powered sound-sensing elements
★ Near-field electrospinning
★ micro/nano fibers
★ green energy collector
★ polyvinylidene fluoride
論文目次 中文摘要(Chinese Abstract) VI
英文摘要(English Abstract) VII
致 謝 VIII
目錄 IX
圖目錄 XI
第一章 緒論 1
1-1 電紡織技術 1
1-2 穿戴式奈米發電機與綠能發電機 2
1-3 論文架構 3
第二章 穿戴式自供電形變感測器 5
2-1 導論 5
2-2 實驗 5
2-2-1 電紡織溶液 5
2-2-2 實驗設備架構與直寫方式奈米發電機/形變感測器製作 6
2-3 結果與討論 7
第三章 近場電紡織壓電纖維製作與智能無電池式聲音感測元件應用 12
3-1 導論 12
3-2 ISSEs製作及應用 12
3-2-1 實驗樣品 12
3-2-2量測設備架構 12
3-3-3結果與討論 12
第四章 新型混能式綠能發電器應用在收集水力與風力能 19
4-1 導論 19
4-2 實驗 19
4-2-1 電紡織溶液 19
4-2-2 3D複合奈米綠能發電器製作 19
4-3 結果與討論 21
第五章 結論 28
參考文獻 29
實驗儀器 32
參考文獻

[1] I. S. Yeo, J. E. Oh, L. Jeong, T. S. Lee, W. H. Park and B. M. Min, Biomacromolecules, 2008, 9, 1106-1116
[2] Q. P. Pham, U. Sharma, and A. G. Mikos, Tissue Eng., 2006, 12, 1197-1211.
[3] C. L. Sun , J. Shi , D. J. Bayerl , X. D. Wang , Energy Environ. Sci., 2011, 4, 4508.
[4] M. A. Rahman, B. C. Lee, D. T. Phan, G. S. Chung, Smart Mater. Struct., 2013, 22, 085017.
[5] X. Y. Xue , S. H. Wang , W. X. Guo , Y. Zhang , Z. L. Wang , Nano Lett., 2012, 12, 5048 .
[6] D. Mandal, S. Yoon, K. J. Kim, Macromol. Rapid Commun., 2011, 32, 831.

[7] Kowalewski, S. Blonski, S. Barral, Bull. Pol. Acad. Sci.: Tech. Sci., 2005, 53, 385.
[8] F.L. Zhou, R.H. Gong, I. Porat, J. Appl. Polym. Sci., 2010, 115, 2591.
[9] Y. K. Fuh, B. S. Wang, C. Yu. Tsai, Scientific Report, 2017, SREP-16-50149B.
[10] J. D. Schiffman, C. L. Schauer, Biomacromolecules, 2007, 8, 2665.
[11] D. Sun, C. Chang, S. Li, L.W. Lin, Nano Lett., 2006, 6, 839.
[12] C. Chang, K. Limkrailassiri, L.W. Lin, Appl. Phys. Lett., 2008, 93, 123111.
[13] Y. K. Fuh, B. S. Wang, Nano Energy, 2016, 30, 677-683.
[14]Y. K. Fuh, S. C. Li, and C. Yu. Chen, APL Materials, 2017, 5, 074202.
[15] J. Chang, L. Lin, Transducers, 2011,747.
[16] S. Platt, S. Farritor, H. Haider, IEEE/ASME Trans. on Mechatronics, 2005, 10, 240.
[17] F. L. Zhou, R. H. Gong,I. Porat, J. Mater. Sci., 2009, 44, 5501.
[18] S. Roundy, P. Wright, Smart Mater. Struct., 2004, 13, 1131.
[19] H. Kim, S. Priya, H. Stephanou, K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control.,2008, 4, 1851.
[20] S. Priya, Appl. Phys. Lett., 2005,87, 184101.
[21] G. Zhu, R. Yang, S. Wang, Z. L. Wang, Nano Lett., 2010, 10, 3151.
[22] H. W. Kim, S. Priya, K. Uchino, Jpn. J. Appl. Phys., 2006, 48, 5836.
[23] X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, Science, 2007, 316, 102.
[24] C. Chang, V. H. Tran, J. Wang, Y. Fuh, L. Lin, Nano Lett., 2010, 10, 726 .
[25] D. Choi, et al., Adv. Mater., 2010, 22, 2187.
[26] S. Xu, Y. Qin, C. Xu, Y. G. Wei, R. Yang, Z. L. Wang, Nat. Nanotechnol., 2010, 5, 367.
[27] Y. Qin, X. D. Wang, Z. L. Wang, Nature, 2008, 451, 809.
[28] Y. Qin, et al., Nano Lett., 2010, 10, 34.
[29] R. Yang, Y. Qin, L. Dai, Z. L. Wang, Nat. Nanotechnol., 2009, 34.
[30] X. H, et al., Adv. Funct. Mater., 2017, 27, 4, 1601255.
[31] Y. C. Lai, et al., Adv. Funct. Mater., 2017, 27, 1, 1604462.
[32] S. W. Chen, et al., Adv. Energy Mater., 2017, 7, 1, 1601255.
[33] D. Mandal, S. Yoon, K. J. Kim, Macromol. Rapid Commun., 2011, 32, 831.
[34] Y. K. Fuh, S.Y. Chen, C. S. Yeh, Applied Physics Letters, 2013, 103, 3, 033014.
[35] Y. K. Fuh, J. C. Ye, P. C. Chen, H. C. Ho, Z. M. Huang, ACS Applied Materials & Interfaces, 2015, 7, 16923.
[36] Y.K. Fuh, P. C. Chen, Z. M. Huang, RSC Advances, 2015, 5, 67787.
[37] Y. K. Fuh, C. S. Yeh, P. C. Chen, Z. M. Huang, Journal of Materials Chemistry A, 2014, 2, 38, 16101.
[38] Y. K. Fuh, P. C. Chen, Z. M. Huang, Nano Energy, 2014, 11, 671.
指導教授 李天錫(Tien-His Lee) 審核日期 2017-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明