參考文獻 |
[1] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, Vol. 238, pp. 37-38, 1972.
[2] D. K. Bora, A. Braun and E. C. Constable, ““In rust we trust”. Hematite – the prospective inorganic backbone for artificial photosynthesis”, Energy &Environmental Science, Vol. 6, pp. 407-425, 2013.
[3] J. Luo, J.Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N-G Park, S. D. Tilley, H. J. Fan and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts” Science, Vol. 345, pp. 1593-1596, 2014.
[4] M. Grätzel (Eds.), Photoelectrochemical Hydrogen Production, Springer Science+ Business Media, New York, 2012.
[5] 劉傳璽、陳進來編著,半導體元件物理與製程理論與實務,五南書局,台灣,2014。
[6] J. A. Glasscock, “Nanostructured materials for photoelectrochemical hydrogen production using sunlight”, PhD thesis, School of Chemical Sciences and Engineering, University of New South Wales, 2008.
[7] N. Sato (Eds.), Electrochemistry at Metal and Semiconductor Electrodes, Elsevier, 1998.
[8] M. F. Weber and M. J. Dignam, “Splitting water with semiconducting photoelectrodes efficiency considerations”, International Journal of Hydrogen Energy, Vol. 11, pp. 225–232, 1986.
[9] A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne, J. A. Glasscock, “Efficiency of solar water splitting using semiconductor electrodes”, International Journal of Hydrogen Energy, Vol. 31, pp. 1999–2017, 2006.
[10] J. R. Bolton, S. J. Strickler, J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water”, Nature, Vol. 316, pp. 495–500, 1985.
[11] H. Gerischer, “Electrochemical behavior of semiconductors under illumination”, Journal of The Electrochemical Society, Vol. 113, pp. 1174-1182, 1966.
[12] M. F. Weber and M. J. Dignam, “Efficiency of splitting water with semiconducting photoelectrodes”, Journal of The Electrochemical Society, Vol. 131, pp. 1258–1265, 1984.
[13] S. Licht, B. Wang, and S. Mukerji, T. Soga, M. Umeno and H. Tributsch, “Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis” Journal of Physical Chemistry B, Vol. 104, pp. 8920–8924, 2000.
[14] W.J. Youngblood, S.H.A. Lee, Y. Kobayashi, E.A. Hernandez-Pagan, P.G. Hoertz, T.A. Moore, A.L. Moore, D. Gust and T.E. Mallouk, “Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell”, Jouranl of the American Chemical Society, Vol. 131, pp. 926-927, 2009.
[15] M.W. Kanan and D.G. Nocera, “In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+”, Science, Vol. 321, pp. 1072–1075, 2008.
[16] T. Bak, J. Nowotny, M. Rekas and C. C. Sorrell, “Photoelectrochemical hydrogen generation from water using solar energy”, International Journal of Hydrogen Energy, Vol. 27(10), pp. 991-1022, 2002.
[17] R. V. D. Krol, Y. Liang and J. Schoonman, “Solar hydrogen production with nanostructured metal oxides”, Journal of Materials Chemistry, Vol. 18, pp. 2311-2320, 2008.
[18] K. R. Lee, Y. P. Hsu, X. J. K. Chang, S. W. Lee and C. J. Tseng, “Effects of spin speed on the photoelectrochemical properties of Fe2O3”, International Journal of Electrochemical Science, Vol. 9, pp. 7680-7692, 2014.
[19] Y. P. Hsu, S. W. Lee, J. K. Chang, C. J. Tseng, K. R. Lee and C. H. Wang, “Effects of platinum doping on the photoelectrochemical properties of Fe2O3 electrodes”, International Journal of Electrochemical Science, Vol. 8, pp. 11615-11623, 2013.
[20] C. J. Tseng, C. H. Wang and K. W. Cheng, “Photoelectrochemical Performance of Gallium-doped AgInS2 Film Electrodes”, Solar Energy Materials and Solar Cells, Vol. 36, pp. 33-42, 2012.
[21] C. H. Wang, K. W. Cheng and C. J. Tseng, “Photoelectrochemical properties of AgInS2 thin films prepared using electrodeposition”, Solar Energy Materials and Solar Cells, Vol. 95, pp. 453-461, 2011.
[22] K. L. Hardee and A.J. Bard, “Semiconductor electrodes 5. Application of chemically vapor deposited iron-oxide films to photosensitized electrolysis”, Journal of The Electrochemical Society, Vol. 123, pp. 1024-1026, 1976.
[23] A. A. Akl, “Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis”, Applied Surface Science, Vol. 233, pp. 307-319, 2004.
[24] C.-Y. Chang, C.-H. Wang, C.-J. Tseng, K.W. Cheng, L.W. Hourng, B.T. Tsai, ”Self-oriented iron oxide nanorod array thin film for photoelectrochemical hydrogen production,” Int. J. Hydrogen Energy, Vol. 37, pp. 13616-13622, 2012.
[25] M. Momirlan and T. N. Veziroglu, “Current status of hydrogen energy”, Renewable Sustainable Energy, Vol. 6, pp. 141-179, 2002.
[26] M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett and P. R. Trevellick, “Electrochemistry and photoelectrochemistry of iron(III) oxide”, Journal of the Chemical Society, Faraday Transactions, Vol. 79, pp. 2027-2041,1983.
[27] R.K. Quinn, R.D. Nasby and R.J. Baughman, “Photoassisted electrolysis of water using single crystal alpha-Fe2O3 anodes”, Materials Research Bulletin, Vol. 11, pp. 1011-1017, 1976.
[28] K. Itoh and J.O. Bockris, “Stacked thin-film photoelectrode using iron-oxide”, Journal of Applied Physics, Vol. 56, pp. 874, 1984.
[29] K. Itoh and J.O. Bockris, “Thin-film photoelectrochemistry – iron-oxide”, Journal Electrochemical Society, Vol. 131, 1266-1271, 1984.
[30] G. Horowitz, “Capacitance voltage measurements and flat-band potential determination on Zr-doped alpha-Fe2O3 single-crystal electrodes”, Journal of Electroanalytical Chemistry, Vol. 159, pp. 421-436, 1983.
[31] C. Sanchez, K.D. Sieber and G.A. Somorjai, “The photoelectrochemistry of niobium doped α-Fe2O3”, Journal of Electroanalytical Chemistry, Vol. 252, pp. 269-290, 1988.
[32] M. J. Katz, S. C. Riha, N. C. Jeong, A. B. F. Martinson, O. K. Farha and J. T. Hupp, “Toward solar fuels: Water splitting with sunlight and “rusrt”?”, Coordination Chemistry Reviews, Vol. 256, pp. 2521-2529, 2012.
[33] R. Liu, Z. Zheng, J. Spurgeon and X. Yang, “Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers”, Energy & Environmental Science, Vol. 7, pp. 2504-2517, 2014.
[34] C. Du, X. Yang, M. T. Mayer, H. Hoyt, J. Xie, G. McMahon, G. Bischoping and D. Wang, “Hematite-Based Water Splitting with Low Turn-On Voltages”, Angewandte Chemie International, Vol. 52, pp. 12692-12695, 2013.
[35] C. G. M. Guio, M. T. Mayer, A. Yella, S. D. Tilly, M. Grätzel and X. Hu, “An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting”, Journal of The American Chemical Society, Vol. 137, pp. 9927-9936, 2015.
[36] R. Eason (Eds.), Pulsed laser deposition of thin films, John Wiley & Sons, Inc., Canada, 2007.
[37] R. Brahimi, B Bellal, Y. Bessekhouad, A. Bouguelia and M. Trari, “Physical properties of CuAlO2 single crystal”, Journal of Crystal Growth, Vol. 310, pp. 4325-4329, 2008. |