博碩士論文 103323045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:52.15.59.163
姓名 顏嘉誼(Chia-Yi YEN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究
(Investigation of Cyclic Block/Olefin Copolymer Microchannel Sealing by Thermal Bonding, Surface Modification and Solvent Treatment)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)★ 複合式物理力的生物反應器自動化與控制設計
★ 外部致動之微流體機電控制平台★ 以微铣削進行高分子微流體裝置之製程整合
★ 奈米矽質譜晶片於質譜檢測之應用研究★ 矽奈米結構對於質譜離子化效率探討之研究
★ 微滾軋製程應用於高分子材料轉印微結構之研究★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究
★ 利用熱壓製造類多孔隙介質之 微流道模型研究★ 單晶矽材料電化學放電鑽孔及同軸電度之研究
★ 微流道中液滴成形及滴落現象之模擬分析★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究
★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用★ 應用磁性粒子於微流體裝置之可逆接合
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 環狀嵌段共聚物(CBC)是一款新型熱塑性材料,具有優異的光學性質、低吸水率、高耐化性以及低密度等特性,亦可以使用射出成形、射吹成型與壓出成型等加工製程。為了瞭解環狀嵌段共聚物作為微流體晶片材料的適用性,本實驗以環狀嵌段共聚物材料在其上加工微流道後,封閉微流道的品質表現為主要觀察要素。對於可以有效使用的熱塑性微流道晶片製作而言,封閉微流道使其不發生漏液狀況的步驟尤其重要。
本實驗使用兩款環狀嵌段共聚物 (CBC010,CBC034) 為主要觀察材料,並與當前已被廣泛使用於微流體晶片材料的環烯烴聚合物(COP)、環烯烴共聚物(COC)做封閉流道之品質表現的對照。
目前有各種封閉微流道的方式,本實驗使用三種晶片接合方法: 熱接合、表面經過UV/Ozone曝光改質後再進行熱接合與表面經溶劑處理後施壓接合;。溶劑接合法會使用旋轉塗佈機將三種溶劑(甲苯、正己烷、甲基環己烷)均勻有效率地分布在聚合物試片表面上,使晶片接合面各處受溶劑接觸後的溶解程度均勻並且降低氣泡產生。
實驗結果顯示CBC010具有最佳的光學穿透率並具有高熱流動率,導致未經表面處理的最佳化參數晶片熱接合實驗中呈現30%的流道型變量(流道原始高度/寬度:124/200µm)。 CBC034經過表面質改後展現最高的晶片接合強度,並且經過表面改質後在低溫進行晶片熱接合的微流道僅有5.68 µm的縮減量。CBC010經過表面改質後熱接合的流道變型量亦大幅降至5.86 µm,變形量皆小於5%。 環烯烴聚合物(COP)與環烯烴共聚物(COC)接觸三種溶劑後,在微流道沒有倒塌和堵塞的情況下成功完成接合。環狀嵌段共聚物(CBC)良好的耐化性使其接觸溶劑後,表面無明顯軟化與流動的現象發生,故無法使用甲苯、正己烷、甲基環己烷進行溶劑處理後的晶片接合。
摘要(英)
Cyclic block copolymer (CBC) is a new class of thermoplastic with excellent optical property, low water absorption, great chemical resistant and low density. It is also suitable for injection molding, injection blow molding and embossing fabrication process. In order to know the CBC suitability of microfluidic chip, the microchannel sealing quality of microfluidic chip used CBC as substrate material was studied for a functional microchannel chip shows no leakage after microchannel sealing is necessary.
This thesis used two grade of cyclic block copolymers (CBC010&CBC034) as main study objects. Cyclic olefin copolymers (COC) and cyclic olefin polymers (COP) were used as microchannel sealing quality comparison group for they have been commonly used in microfluidic chip fabrication. Three bonding methods were used in this study which are: pure thermal bonding, thermal bonding after UV/ozone surface modification and solvent bonding.
For solvent bonding, spin coating method was applied for distributing solvents (toluene, n-hexane, methyl cyclohexane) on thermoplastic substrates instead of vaporing and dropping method to efficiently form a uniform and few bubble bonding interface.
The experiment results show that CBC010 has extra-high transparency and its high melt flow rate causing 30% channel deformation after pure thermal bonding.(Original channel height/width:124/200µm). After surface treatment, CBC034 showed highest bonding strength and only 5.68µm channel deformation after thermal bonding, the channel deformation of CBC010 also decreased to 5.86µm, both their deformation percentage were lower than 5%. COC and COP microchannel were successfully sealed with three solvents and no clogging and collapse happened. CBC series showed their high solvent resistance that hardly be solvated by solvents that surface didn’t become soft and mobile after solvent treatment.
關鍵字(中) ★ 微流道
★ 接合
關鍵字(英) ★ microchannel
★ bonding
論文目次
TABLE OF CONTENT
Page
LIST OF TABLES XI
LIST OF FIGURES XII
1. INTRODUCTION 1
1.1 Microfluidics and applications 1
1.2 Thermoplastic material for microfluidic chip 1
1.3 Bonding methods of thermoplastic microfluidics 4
1.3.1 Direct bonding method 4
1.3.2 Indirect bonding methods 6
1.4 Characteristics of experiment thermoplastics 7
1.5 Optimization of bonding parameter 9
1.5.1 Thermal bonding 9
1.5.2 Surface treatment and modification 9
1.5.3 Solvent bonding – solubility parameters 9
1.5.4 Solvent selection 11
1.6 Motivation and objective 14
2. METHODOLOGY 15
2.1 Experiments process 15
2.2 Substrate preparation 15
2.3 Microchannel fabrication 16
2.4 Bonding procedures 17
2.4.1 Thermal bonding 17
2.4.2 Bonding strength test- Crack- opening method 18
2.4.3 Thermal bonding with substrate surface modification. 19
2.4.4 Contact angle detection 19
2.4.5 Transmission test 20
2.4.6 Solvent bonding 20
2.5 Leakage test 21
2.6 Cross section detection 21
3. RESULTS AND DISCUSSIONS 22
3.1 Thermal bonding strength test 22
3.2 The optimal parameters of thermal bonding 23
3.3 Contact angle measurement 26
3.4 Bonding strength test of different UV/Ozone exposure time 28
3.5 Bonding strength with substrate surface modification 29
3.5.1 The optimal parameters of thermal bonding with surface modification 31
3.5.2 The substrate transmission of different UV/Ozone exposure time 32
3.6 Solvent bonding 33
4. CONCLUSIONS 38
REFERENCES 40
APPENDIX 44
A. CBC characteristics 44
B. Thermal bonding strength test 45
C. Thermal bonding strength test after surface modification 47
參考文獻

REFERENCES
[1] M. Gel, S. Kandasamy, K. Cartledge, and D. Haylock, ”Fabrication of free standing microporous COC membranes optimized for in vitro barrier tissue models,” Sensors and Actuators A: Physical, vol. 215, pp. 51-55, 2014.
[2] E. K. Sackmann, A. L. Fulton, and D. J. Beebe, ”The present and future role of microfluidics in biomedical research,” Nature, vol. 507, pp. 181-9, Mar 13 2014.
[3] ”Microfluidics in search of a killer application,” Nature Methods, vol. 4, p. 5, 2007.
[4] H. Becker and C. Gartner, ”Polymer microfabrication technologies for microfluidic systems,” Anal Bioanal Chem, vol. 390, pp. 89-111, Jan 2008.
[5] A. M. Wan, A. Sadri, and E. W. Young, ”Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves,” Lab Chip, vol. 15, pp. 3785-92, 2015.
[6] C.-W. Tsao and D. L. DeVoe, ”Bonding of thermoplastic polymer microfluidics,” Microfluidics and Nanofluidics, vol. 6, pp. 1-16, 2008.
[7] H. Shinohara, J. Mizuno, and S. Shoji, ”Studies on low-temperature direct bonding of VUV, VUV/O3 and O2 plasma pretreated cyclo-olefin polymer,” Sensors and Actuators A: Physical, vol. 165, pp. 124-131, 2011.
[8] M. M. Alenka Vesel, ”Surface modification and ageing of PMMA polymer by oxygen plasma treatment,” vacuum, vol. 86, p. 4, 2012.
[9] C. W. Tsao, L. Hromada, J. Liu, P. Kumar, and D. L. DeVoe, ”Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment,” Lab Chip, vol. 7, pp. 499-505, Apr 2007.
[10] S. Roy, C. Y. Yue, S. S. Venkatraman, and L. L. Ma, ”Fabrication of smart COC chips: Advantages of N-vinylpyrrolidone (NVP) monomer over other hydrophilic monomers,” Sensors and Actuators B: Chemical, vol. 178, pp. 86-95, 2013.
[11] H. Yu, Z. Z. Chong, S. B. Tor, E. Liu, and N. H. Loh, ”Low temperature and deformation-free bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treatment and PVA coating,” RSC Adv., vol. 5, pp. 8377-8388, 2015.
[12] R. K. Jena, C. Y. Yue, and L. Anand, ”Improvement of thermal bond strength and surface properties of Cyclic Olefin Copolymer (COC) based microfluidic device using the photo-grafting technique,” Sensors and Actuators B: Chemical, vol. 157, pp. 518-526, 2011.
[13] L. Riegger, O. Strohmeier, B. Faltin, R. Zengerle, and P. Koltay, ”Adhesive bonding of microfluidic chips: influence of process parameters,” Journal of Micromechanics and Microengineering, vol. 20, p. 087003, 2010.
[14] L. El Fissi, D. Vandormael, and L. A. Francis, ”Direct assembly of cyclic olefin copolymer microfluidic devices helped by dry photoresist,” Sensors and Actuators a-Physical, vol. 223, pp. 76-83, Mar 2015.
[15] C. Lu, L. J. Lee, and Y. J. Juang, ”Packaging of microfluidic chips via interstitial bonding technique,” Electrophoresis, vol. 29, pp. 1407-14, Apr 2008.
[16] ”Topas_8007S-04 datasheet,” http://www.topas.com/sites/default/files/TDS_8007S-04_e_US.pdf, 2017.
[17] P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, ”Cyclic olefin polymers: emerging materials for lab-on-a-chip applications,” Microfluidics and Nanofluidics, vol. 9, pp. 145-161, 2010.
[18] ”Topas brochure cyclic olefin copolymer,” http://www.topas.com/sites/default/files/files/TOPAS_Brochure_E_2014_06%281%29.pdf, 2014.
[19] ”Zeonor cyclic olefin polymer datasheet,” http://www.zeon.co.jp/content/200181692.pdf, 2012.
[20] ”Topas general introduction,” https://www.polyplastics.com/en/product/lines/topas/general_e.pdf, 2015.
[21] ”Puratran cyclic block copolymer datasheet,” http://www.usife.com/USIWebFiles/Product/CBC-Puratran_en.pdf, 2016.
[22] N. Keller, T. M. Nargang, M. Runck, F. Kotz, A. Striegel, K. Sachsenheimer, et al., ”Tacky cyclic olefin copolymer: a biocompatible bonding technique for the fabrication of microfluidic channels in COC,” Lab Chip, vol. 16, pp. 1561-4, Apr 26 2016.
[23] M. Laher and S. Hild, ”A detailed micrometer scale investigation of the solvent bonding process for microfluidic chip fabrication,” RSC Advances, vol. 4, p. 5371, 2014.
[24] S. P. Ng, F. E. Wiria, and N. B. Tay, ”Low Distortion Solvent Bonding of Microfluidic Chips,” Procedia Engineering, vol. 141, pp. 130-137, 2016.
[25] ”Solubility Parameters_ Theory and Application,” http://cool.conservationus.org/coolaic/sg/bpg/annual/v03/bp0304.html, 2017.
[26] Y. H. T. Myra T. Koesdjojo, and Vincent T. Remcho, ”Fabrication of a Microfluidic System for Capillary Electrophoresis Using a Two-Stage Embossing Technique and Solvent Welding on Poly(methyl methacrylate) with Water as a Sacrificial Layer,” Analytical Chemistry, vol. 80, 2008.
[27] T. P. Ryan T. Kelly, and Adam T. Woolley, ”Phase-Changing Sacrificial Materials for Solvent Bonding of High-Performance Polymeric Capillary Electrophoresis Microchips,” Analytical Chemistry, vol. 77, 2005.
[28] Z. Gan, L. Zhang, and G. Chen, ”Solvent bonding of poly(methyl methacrylate) microfluidic chip using phase-changing agar hydrogel as a sacrificial layer,” Electrophoresis, vol. 32, pp. 3319-23, Nov 2011.
[29] D. Ogonczyk, J. Wegrzyn, P. Jankowski, B. Dabrowski, and P. Garstecki, ”Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip, vol. 10, pp. 1324-7, May 21 2010.
[30] I. R. G. Ogilvie, V. J. Sieben, C. F. A. Floquet, R. Zmijan, M. C. Mowlem, and H. Morgan, ”Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC,” Journal of Micromechanics and Microengineering, vol. 20, p. 065016, 2010.
[31] P.-C. Chen and L. H. Duong, ”Novel solvent bonding method for thermoplastic microfluidic chips,” Sensors and Actuators B: Chemical, vol. 237, pp. 556-562, 2016.
[32] M. Worgull, J. F. Hétu, K. K. Kabanemi, and M. Heckele, ”Hot embossing of microstructures: characterization of friction during demolding,” Microsystem Technologies, vol. 14, pp. 767-773, 2008.
[33] W. P. Maszara, G. Goetz, A. Caviglia, J. B. McKitterick, ”Bonding of silicon wafers for silicon-on-insulator,” journal of applied physics, vol. 64, 1988.
[34] Sylvia R. Scheicher / Katrin Krammer / Alexander Fian / Rupert Kargl / Volker Ribitsch / Stefan Köstler, ”Patterned Surface Activation of Cyclo-Olefin Polymers for Biochip Applications,” Periodica Polytechnica Chemical Engineering, vol. 58, p. 7, 2013.
指導教授 曹嘉文(Chia-wen TSAO) 審核日期 2017-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明