博碩士論文 104323059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.117.227.194
姓名 李至誠(Chih-Cheng Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同流道型式之蒸發熱交換器的熱傳性能研究
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ 油冷卻器熱傳與壓降性能實驗分析★ 水對冷媒R22在板式熱交換器內之性能測試分析
★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較★ 油冷卻器性能測試分析與比較
★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試★ 水對空氣在板式熱交換器之性能測試分析
★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析★ 微熱交換器之設計與性能測試
★ 板式熱交換器之入出口壓降實驗分析★ 液體冷卻系統中之微熱交換器性能分析與改良
★ 直接模擬蒙地卡羅法於高低速流場之模擬★ 液體微熱交換器之熱傳增強研究
★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析★ 不同參數對燒結式熱管性能之影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究設計直線流道型、漸擴型以及山型紋之兩相蒸發熱交換器,比
較各型式之熱傳性能,並透過可視化觀察分析流動及熱傳之關係。直線
流道型尺寸共三種: 1. 鰭片高度及間距分別為2、1 mm,2. 鰭片高度及
間距分別為2、2 mm,3. 鰭片高度及間距分別為5、1 mm。漸擴型之流
道設計為鰭片間距1 mm,鰭片高度2 mm 沿流動方向縮減至1 mm 形成
傾斜鰭片。山型紋型式之鰭片間距及高度分別為1、2 mm,傾斜角度為
30度。
鰭片高度為5 mm 之直線流道型熱交換器具有最高之熱傳量,且飽和
溫差最低,熱傳性能最好。其原因為流道內之流動情形以波浪流為主,
流道表面仍有液體補充,使表面溫度較低。而鰭片高度為2 mm 之直線
型、漸擴型流道,流道內以柱狀流為主,汽體佔據流道亦發生局部乾涸
現象使飽和溫差較大。傾斜鰭片之設計使汽泡團聚於流道上方,並無法
有效排除汽泡,流道內以汽體為主熱傳性能低。山型紋之流道於實驗中
未發生燒乾之現象,但無法從可視化觀察到液體團聚於流道之間,且飽
和溫差大。
鰭片高度5 mm 之直線流道具有最低熱阻為0.067 °C/W,相較於其他
型式熱傳量高,且不易乾涸,為本研究設計之最佳型式。
摘要(英) In this study, we designed two-phase evaporative heat exchangers with: straight fin type, expansion type and chevron, and compared the heat transfer performance of each type. There are three geometry of straight fin type: 1. Fin height 2 mm with fin spacing 1 mm, 2. Fin height2 mm with fin spacing 2 mm, 3. Fin height 5 mm with fin spacing 1 mm. The fin space of the expansion type is 1 mm, and fin height reduced from 2 mm to 1 mm. The space and height of the chevron are 1, 2 mm and the inclination angle is 30 °.
The straight fin type with the fin height of 5 mm has the highest heat transfer rate, and the wall superheat temperature is the lowest, which means that the heat transfer performance is the best. The flow pattern inside the channel are wavy flow, which keep the channel surface wetted. So that the surface temperature become low. When fin height is 2 mm, the flow pattern become slug flow by small hydraulic diameter. Which cause the channel surface become partial dry out easier.
The expansion designed allows the bubble to cover the channel, which let vapor stock in the channel. The chevron does not cause dry out in the experiment, but it can’t be observed the liquid between the flow channel from the visualization.
The straight fin type with a fin height of 5 mm has a minimum thermal resistance of 0.067 °C W. Heat transfer rate is higher than other types and the flow pattern inside the channel is not easy to dry out, so that it is the best type in this study.
關鍵字(中) ★ 兩相蒸發器
★ 直線流道
★ 漸擴型
★ 山型紋
★ 可視畫觀察
關鍵字(英)
論文目次
摘要......................................................i
Abstract.................................................ii
目錄....................................................iii
圖目錄..................................................vi
表目錄...................................................x
符號說明................................................xii

第一章 前言................................................1
1.1研究背景與動機..................................1
1.2研究目的........................................8
第二章 兩相蒸發熱交換器文獻回顧..............................9
2.1噴流及噴霧冷卻技術之熱傳性能......................9
2.2多孔蕊材熱交換器之熱傳性能......................15
2.3兩相蒸發微流道熱交換器之熱傳性能.................17
2.3.1微流道之兩相蒸發熱傳..................18
2.4蒸發熱交換器類型之熱傳性能比較...................22
2.5微流道熱交換器內流動現象........................24
2.5.1微流道熱交換器內流動沸騰現象之穩定性改善......28
2.5.2微流道內之局部乾涸改善................35
2.6總結..........................................37
第三章 研究方法...........................................38
3.1兩相蒸發器之流道設計............................38
3.1.1直線流道設計.........................38
3.1.2傾斜鰭片漸擴流道設計..........................48
3.1.3山型紋流道設計...............................48
3.1.4 熱交換器組合................................52
3.2實驗系統.......................................52
3.2.1加熱系統.............................54
3.2.2實驗量測儀器與設備....................57
3.2.2.1溫度量測...................57
3.2.2.2流量量測...................57
3.2.2.3差壓量測...................57
3.2.3資料擷取系統.........................58
3.3 實驗步驟......................................60
3.4 實驗數據換算..................................61
3.4.1加熱瓦數.............................61
3.4.2質量流率.....................................61
3.4.3乾度........................................62
3.4.4熱傳係數.....................................62
3.4.5熱阻值.......................................63
第四章 實驗結果與討論......................................64
4.1熱傳性能之實驗結果..............................64
4.1.1單相能量平衡實驗......................64
4.1.2直線流道型熱交換器之熱傳性能...........66
4.1.3傾斜鰭片型熱交換器之熱傳性能...........72
4.1.4山型紋型熱交換器之熱傳性能............76
4.2蒸發熱交換器之壓降性能..........................80
4.3可視化結果與熱傳性能之關係......................82
4.3.1直線型流道可視化結果與熱傳性能之關係...82
4.3.2傾斜鰭片型流道可視化結果與熱傳性能之關係......86
4.3.3山型紋流道可視化結果與熱傳性能之關係......88
4.4蒸發熱交換器之性能比較..........................90
第五章 結論...............................................91
參考文獻..................................................92
附錄(一)、 實驗誤差分析....................................96
參考文獻
[1] Viswanath, R., Wakharkar, V., Watwe, A., and Lebonheur, V., 2000, “Thermal performance challenges from silicon to systems,”, Intel Technology Journal, Q3.
[2] Saini, M., and Webb, R., 2003, “Heat Rejection Limits of Air Cooled Plane Fin Heat Sinks for Computer Cooling,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 1.
[3] http://www.1-act.com/advanced-technologies/pumped-two-phase-cooling/
[4] “Pumped Two-Phase Cooling Solutions for Challenging Thermal Management Application,” Advanced Cooling Technologies, Inc. 2015.
[5] “Two-Phase Evaporative Precision Cooling Systems For heat loads from 3 to 300kW,” 2011 Parker Hannifin Corporation.
(https://www.parker.com/literature/Precision%20Cooling/Two_Phase_Evaporative_Precision_Cooling_Systems.pdf)
[6] “Cooling High Performance Wind Turbine Systems With Two-Phase Evaporative Cooling,” 2011 Parker Hannifin Corporation.
(http://www.parker.com/parkerimages/Parker.com/Literature/CIC%20Group/Precision%20Cooling/New%20literature/WHITE%20PAPERS/WP-EvaporativeWindTurbineCooling.pdf)
[7] Grag, J., Arik, M,. Weaver, S., and Saddoughi, S., 2004, “Micro fluidic jets for thermal management of electronics,” ASME Heat Transfer/Fluids Engineering Summer Conference, Vol.4, pp. 647-654.
[8] Bintoro, J. S., Akbarzadeh, A. and Mochizuki, M., 2005, “A closed-loop electronics cooling by implementing single phase impinging jet and mini channels heat exchanger,” Applied Thermal Engineering, Vol. 25, pp. 2740-2753.
[9] Omar, A. M. T., Hamed, M. S., and Shoukri, M., 2007, “Nucleate boiling heat transfer under liquid jet impingement,” ASME-JSME Thermal Engineering Summer Heat Transfer Conference, Vol. 1, pp. 723-729.
[10] Mudawar, I., 2001, “Assessment of high-heat-flux thermal management schemes,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 2.
[11] Mudawar, I., 2009, “Two-phase spray cooling of hybrid vehicle electronics,” IEEE Transactions on Components and Packaging Technologies, Vol. 32, No. 2.
[12] Turek, L. J., Rini, D. P., and Saarloos, B. A., 2008, “Evaporative spray cooling of power electronics using high temperature coolant,” IEEE Thermal and Thermomechanical Phenomena in Electronic Systems.
[13] Boomsma, K., Poulikakos, D., and Zwick, F., 2003, “Metal Foams as Compact High Performance Heat Exchangers,” Mechanics of Materials, vol. 35, pp. 1161-1176.
[14] Peterson, G. P., and Chang, C. S., 1998, “Two-Phase Heat Dissipation Utilizing Porous-Channels of High-Conductivity Material,” Journal of Heat Transfer, vol. 120, pp. 243-252.
[15] Tuckerman, D. B., and Pease , R.F.W., 1981, “High-performance heat sinking for VLSI,” IEEE Electron Devices Society, Vol. 2, pp. 126-129.
[16] Collier, J. G., and Thome, J. R., 1996, Convective Boiling and Condensation, Oxfird University Press Inc., New York.
[17] Qu, W. and Mudawar, I., 2003, “Flow boiling heat transfer in two-phase micro-channel heat sinks-I Experimental investigation and assessment of correlation methods,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 2755-2771.
[18] Wang, C.-C., Hsu, L.-C., Cion, S.-W., and Lin, K.-W., ”An experimental study of inclination on the boiling heat transfer characteristics of a micro-channel heat sink using HFE-710,” International Communications in Heat and Mass Transfer, Vol. 62, pp. 13-17.
[19] Kandlikar, S.G., Gaeimella, s., Li, D., Colin, S., and Ling, M. R., 2014, ”Heat Transfer and Fluid Flow in Minichannels and Microchannels,” Elsevier Ltd.
[20] Agostini, B., Fabbri, M., Park, J.E., Wojtan, L., Thome, J.R., and Michel, B., 2007, ”State of the Art of High Heat Flux Cooling Technologies,” Heat Transfer Engineering, Vol. 28, No. 4,pp. 258-281.
[21] Cornwell, K., and Kew, P. A., 1992, “Boiling in small parallel channels,” Proceedings of CEC Conference on Energy Efficiency in Process Technology, Athens, Elsevier Applied Sciences, pp. 624–638., Quoted in [32].
[22] Balasubramanian, P., and Kandlikar, S. G., 2005, ”Experimental study of flow patterns, pressure drop and flow instabilities in parallel rectangular minichannels, Heat Transfer Engineering, Vol. 26, pp. 20-27.
[23] Lee, J., and Mudawar, I., 2008, “Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks – Part 1: Experimental methods and flow visualization results,” International Journal of Heat and Mass Transfer, Vol. 51, pp. 4315-4326.
[24] Qu, W., and Mudawar, I., 2004, “Transport phenomena in two-phase micro-channel heat sinks,” ASME Journal of Electronic Packaging, Vol. 126, pp. 213-224.
[25] Lu, C.-T., Pan, C., 2011, “Convective boiling in a parallel microchannels heat sink with a diverging cross section and artificial nucleation sites”, Experimental Thermal and Fluid Science, Vol. 35, pp. 810-815.
[26] Balasubramanian, K., Lee, P.S., Jin, L.W., Chou, S.K., Teo, C.J., Gao, S., 2011, “Experimental investigations of flow boiling in straight and expanding microchannels — a comparative study”, International Journal of Thermal Sciences, Vol. 50, pp. 2413-2421.
[27] Kandlikar, S. G., Widger, T., Kalani, A., Mejia, V., 2013, “Enhanced flow boiling over open microchannels with uniform and tapered gap manifolds (OMM)”, Journal of Heat Transfer, Vol. 135, 061401-1 (9 pages).
[28] Liu, W.-C. and Yang, C.-Y., 2014, “Two-Phase Flow Visualization and Heat Transfer Performance of Convective Boiling in Micro Heat Exchangers,” Experimental Thermal and Fluid Science, Vol. 57, pp. 358-364.
[29] Kandlikar, S.G., 2002, “Fundamental issues related to flow boiling in minichannels and microchannels,” Experimental Thermal and Fluid Science, Vol. 26, pp. 389-407.
[30] Fritz, W., 1935, “Berechnung des Maximal Volumens von Dampfblasen,” Phys. Z., Vol. 36., Quoted in [16]
[31] Shah, M. M., 1976, “A New Correlation for Heat Transfer during Boiling Flow Through Pipes,” ASHRAE Transaction, Vol. 82, No. 2, pp. 66-86.
[32] Kandlikar, S. G., and Balasubramanian, P., 2004, “An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels,” Heat Transfer Engineering, Vol. 25, pp. 86-93.
[33] Wei, L., and Wu, Z., 2010, “A general correlation for evaporative heat transfer in micro/mini-channels,” International Journal of Heat and Mass Transfer, Vol. 53, pp. 1778-1787.
[34] Alves, G. E., “Co-current liquid-gas flow in a pipe-line contactor,” Chemical Engineering Progress, vol. 50, pp. 449–456., Quoted in [16]
指導教授 楊建裕 審核日期 2017-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明