博碩士論文 104323005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:3.149.214.32
姓名 黃乙玄(Yi-Xuan Hwang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 有限元素法與反應曲面法對傘形齒輪旋轉鍛造之模具磨耗分析
相關論文
★ 中尺寸LED背光模組之實驗研究★ 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
★ 以反應曲面法進行行動電話卡勾之最佳化設計★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為
★ A1070在累進式背擠製下的機械性質與微結構之研究★ 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製
★ 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計
★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究★ 旋轉鍛造螺旋齒輪製程分析
★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析★ 以有限元素法與反應曲面法分析增量式板金成形
★ 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計★ 以有限元素法與反應曲面法分析兩點增量成形
★ 引伸成形加工問題之有限元素分析★ 應用流函數法分析軸對稱熱擠製加工問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文利用有限元素軟體Deform-3D進行旋轉鍛造傘形齒輪模擬分析,研究設計參數對下模具的磨耗深度、應變均勻度與最大磨耗位置點的影響,並利用下模具的最大磨耗深度估計模具壽命。本文之設計參數包含對胚料預成形之參數設計及旋轉鍛造加工製程參數等六個因子。胚料預成形設計參數包含體積V、胚料下端高度h_1、胚料上端直徑d_1以及胚料下端直徑d_2;旋轉鍛造加工製程參數包含下模每轉進給率S以及上模具傾斜角γ。實驗設計採用適合建構二階反應曲面之Box-Behnken 6因子3水準的設計建立共49組模擬,並使用統計軟體Minitab依Deform-3D有限元素分析的結果進行回歸分析,透過回歸分析建立二階多項式預測模型,求得下模具的磨耗深度在良好的情形下,應變均勻度最小之最佳化解。本文所建立的磨耗深度及應變均勻度預測方程式與有限元素模擬的結果進行驗證,其結果顯示預測模型具有精確度。
摘要(英) An ideal FE model of cold rotary forging of a spur bevel gear is developed under the Deform-3D software and the Bottom Die of Life on maximum wear depth and equivalent strain uniformity are in this study.
The six factors in the design include the work-piece geometry and the rotary forging process parameters. The work-piece geometry such us piece volume V, Lower height〖 h〗_1, the diameter of the upper and lower diameter〖 d〗_1 〖、d〗_2 and the rotary forging process parameter such us the process parameter with feed amount of per revolution S , and inclination angle of the upper die γ.The experiment adopts 49 groups of analogs with the Box-Behnken design. Use the Minitab software to do the regression analysis and develop the predicted equations. By doing so, it’s excepted using the FEM model and surface response methodology to find the optimum design of the Bottom Die maximum wear depth and equivalent strain uniformity .
In this paper Bottom Die maximum wear depth and strain uniformity prediction equation established with the results of finite element simulations to verify the results show the prediction model with considerable accuracy.
關鍵字(中) ★ 旋轉鍛造 關鍵字(英) ★ rotary forging
論文目次
摘要 i
目錄 viiii
圖目錄 v
表目錄 viii
符號說明 xvii
第一章 緒論 1
1-1研究背景與動機 1
1-2 金屬加工方法 2
1-3文獻回顧 6
1-3-1 圓柱及圓環旋轉鍛造鍛粗加工 6
1-3-2 傘形齒輪旋轉鍛造加工 11
第二章 基本理論 20
2-1旋轉鍛造成型原理 20
2-2 旋轉鍛造運動分析 24
2-3傘形齒輪模具建立 34
2-4磨耗理論 38
第三章 有限元素法與實驗設計法 42
3-1有限元素模擬 42
3-1-1有限元素法於塑性加工之應用 43
3-1-2有限元素法之力學模式及數值分析 44
3-2 Deform-3D有限元素軟體[42] 45
3-2-1軟體介紹 45
3-2-2 Deform-3D的使用流程 46
3-3模擬參數設定 47
3-3-1旋轉鍛造加工參數及材料性質 47
3-3-2 Archard磨耗模型參數 50
3-3-3有限元素網格建構與模擬收斂性探討 51
3-3-4最大磨耗深度有限元素分析結果例 56
3-4實驗設計法[41] 59
3-4-1反應曲面法(Response Surface Methodology,RSM) 59
3-4-2迴歸分析基本理論 59
3-4-3模擬實驗因子與水準 62
第四章 結果與討論 65
4-1模擬驗證 65
4-2旋轉鍛造傘形齒輪模擬結果 66
4-2-1旋轉鍛造傘形齒輪之軸向成形力 70
4-2-2旋轉鍛造傘形齒輪之應變均勻度 71
4-2-3下模具之磨耗深度及估計壽命 72
4-2-4下模具發生最大磨耗深度之位置 74
4-3模型建構 81
4-3-1應變均勻度之回歸分析 81
4-3-2最大磨耗深度之回歸分析 85
4-3-3模型檢驗 100
4-4旋轉鍛造傘形齒輪之最佳化分析 101
4-4-1模擬實驗最佳化 102
4-5品質因子對品質特性之效應 108
4-5-1品質因子對應變均勻度之效應 108
4-5-2品質因子對下模具磨耗深度之效應 111
第五章 結論與建議 114
5-1結論 114
5-2建議 115
參考文獻 116
附錄A 123
附錄B 127
附錄c 129
附錄D 131
參考文獻




[1] E. E. Slick, ”Method of and apparatus for forgingmetal”. US Patent 915 232, 16 March 1909.
[2] Choi, S., Na, K. H., and Kim, J. H., 1997, “Upper-bound analysis of the rotary forging of a cylindrical billet”, Journal of Materials Processing Technology, Vol.67, No.1, pp. 78-82.
[3] Han, X., and Hua, L, 2009, “Comparison between cold rotary forging and conventional forging”, Journal of mechanical science and technology, Vol.23, No.10, pp. 2668-2678.
[4] Marciniak, Z., 1970, “A rocking-die technique for cold-forming operations”, Machinery and Production Engineering, Vol.117, pp. 792-797.
[5] Slater, R.A.C., and Appleton, E., 1970, “Some experiments with model materials to simulate the rotary forging of hot steels”, Machine Tool Design Research Conf., Binningham, U.K., pp. 1117-1136.
[6] Standring, P. M., and Appleton, E., 1980, “Rotary forging developments in Japan, Part 1, Machine development and forging research”, Journal of Mechanical Working Technology, Vol.3, No.3, pp. 253-273.
[7] Schey, J. A., Venner, T. R., and Takomana, S. L., 1982, “Shape changes in the upsetting of slender cylinders”, Journal of Engineering for Industry, Vol.104, No.1, pp. 79-83.
[8] Zhang, M., 1984, “Calculating force and energy during rotating forging”, In 3 rd International Conference on Rotary Metalworking Processes(ROMP 3), pp. 115-124.
[9] Oudin, J., Ravalard, Y., Verwaerde, G., and Gelin, J. C., 1985, “Force, torque and plastic flow analysis in rotary upsetting of ring shaped billets”, International journal of mechanical sciences, Vol.27, No.11, pp. 761-780.
[10] Shivpuri, R., 1988, “Past developments and future trends in the rotary or orbital forging process”, Journal of Materials Shaping Technology, Vol.6, No.1, pp. 55-71.
[11] Decheng, Z., Shijian, Y., Wang, Z. R., and Zhenrui, X., 1992, “Defects caused in forming process of rotary forged parts and their preventive methods”, Journal of Materials Processing Technology, Vol.32, No.1, pp. 471-479.
[12] Guangchun, W., Kemin, X., and Yan, L., 1997, “Methods of dealing with some problems in analyzing rotary forging with the FEM and initial application to a ring workpiece”, Journal of materials processing technology, Vol.71, No.2, pp. 299-304.
[13] Choi, S., Na, K. H., and Kim, J. H., 1997, “Upper-bound analysis of the rotary forging of a cylindrical billet”, Journal of Materials Processing Technology, Vol.67, No.1, pp. 78-82.
[14] Oh, H. K., and Choi, S., 1997, “A study on center thinning in the rotary forging of a circular plate”, Journal of materials processing technology, Vol.66, No.1, pp. 101-106.
[15] Liu, G., Yuan, S. J., Wang, Z. R., and Zhou, D. C., 2004, “Explanation of the mushroom effect in the rotary forging of a cylinder”, Journal of materials processing technology, Vol.151, No.1, pp. 178-182.
[16] Guangchun, W., and Guoqun, Z., 2002, “Simulation and analysis of rotary forging a ring workpiece using finite element method”, Finite elements in analysis and design, Vol.38, No.12, pp. 1151-1164.
[17] Montoya, I., Santos, M. T., Pérez, I., González, B., and Puigjaner, J. F., 2008, “Kinematic and sensitivity analysis of rotary forging process by means of a simulation model”, International Journal of Material Forming, Vol.1, No.1, pp. 383-386.
[18] G. Liu, S. J. Yuan, Z. R. Wang and T. Xie, ”Finite element model and simulation of rotary forging of a disc,” ACTA Metallurgica Sinica (English Letters), vol. 13, no. 2, pp. 470-475, 2009.
[19] Han, X., and Hua, L, 2009, “Comparison between cold rotary forging and conventional forging”, Journal of mechanical science and technology, Vol.23, No.10, pp. 2668-2678.
[20] Hua, L., and Han, X., 2009, “3D FE modeling simulation of cold rotary forging of a cylinder workpiece”, Materials & Design, Vol.30, No.6, pp. 2133-2142.
[21] Han, X., and Hua, L., 2009, “Effect of size of the cylindrical workpiece on the cold rotary-forging process”, Materials & Design, Vol.30, No.8, pp. 2802-2812.
[22] Han, X., and Hua, L., 2009, “3D FE modeling of cold rotary forging of a ring workpiece”, Journal of Materials Processing Technology, Vol.209, No.12-13, pp. 5353–5362.
[23] Han, X., and Hua, L., 2012, “Friction behaviors in cold rotary forging of 20CrMnTi alloy”, Tribology International, Vol.55, pp. 29-39.
[24] Han, X., and Hua, L., 2012, “3D FE modeling of contact pressure response in cold rotary forging”, Tribology International, Vol.57, pp. 115–123.
[25] Wang, H., Sun S., Xia, J., and Zhang, M., 2005, “3D Finite Element Simulation of Rotary Forging in Spiral Bevel Driven Gear”, China Metalforming Equipment & Manufacturing Technology, Vol.40, No.3, pp. 93-96.
[26] Hu, R., Cheng, P. Y., Hua, L., Lu, Z. G., and Lan, J., 2007, “Influence of Processing Parameter on Stress and Failure Form of Rotary Roll Cavity Die for Straight Tooth Bevel Gear”, Hot Working Technology, Vol.36, No.1, pp. 38-41.
[27] Cheng, P. Y., Hu, R., Lu, Z, Guo., and Hwa, L., 2008, “3D numerical simulation of rotary forging for bevel gear blank”, China Metalforming Equipment & Manufacturing Technology, Vol.40, No.3, pp. 93-96.
[28] 何明祥,2008,”斜齒輪溫間擺輾鍛造模具最佳化設計與壽命預估之研究”,碩士論文,國立高雄應用科技大學。
[29] Li, Y., Wang H., Wang, X., and Zhu, C., 2009, “Study on rotary forging process of spiral bevel gear”, Forging & Stamping Technology, Vol.34, No.6, pp. 24-27.
[30] Li, Y., Wang, H., Wang, X., and Zhu, C., 2009, “Fracture of Concave Die for Spiral Bevel Gear in the Rotary Forging Process”, China Metal Forming Equipment & Manufacturing Technology, Vol.44, No.4, pp. 89-92.
[31] Deng, X., Hua, L., Han, X., and Song, Y., 2011, “Numerical and experimental investigation of cold rotary forging of a 20CrMnTi alloy spur bevel gear”, Materials & Design, Vol.32, No.3, pp. 1376-1389.
[32] Samołyk, G., 2013, “Investigation of the cold orbital forging process of an AlMgSi alloy bevel gear”, Journal of Materials Processing Technology, Vol.213, No.10, pp. 1692-1702.
[33] Feng, W., Yao, W.,Shao, C.,andHu.,Y.,2010, “Simulation and Analysis of Four Trajectories of Orbital Forming Press Head” , Journal of Netshape Forming Engineering,
[34] 劉漢貴,李祖榮,朱國瑾,“擺輾運動軌跡及調整曲線的分析研究,”精密成形工程,第十三冊編號4,pp.90-94,1995
[35] 馮文成, 姚萬貴, 蔣鵬,“擺輾機新型螺旋線運動軌跡研究,”CMET鍛壓裝備與製造技術,第二期 ,2014
[36] 馮文成, 姚萬貴, 蔣鵬,石一磬,“擺輾機新型多辦玫瑰線的運動軌跡,”塑性工程學報,第20卷 ,第6期
[37] 蕭至祥,2014,”傘形齒輪旋轉鍛造製程有限元素分析”,碩士論文,國立中央大學。
[38] 趙龍清,2015,”以有限元素法與反應曲面法分析加工路徑對旋轉鍛造齒輪最佳化設計之影響”,碩士論文,國立中央大學。
[39] 蘇耿民,2015,”以有限元素法及反應曲面法分析旋轉鍛造傘形齒輪之加工問題”,碩士論文,國立中央大學。
[40] 張劭賓,2016,”加工路徑對傘形齒輪旋轉鍛造製程之有限元素法與反應曲面法分析”,碩士論文,國立中央大學。
[41] 葉怡成,2001年6月,”製程與產品最佳化 ”,五南出版社。
[42] DEFORM-3D V6.1(sp1) User’s Manual,2007.
[43] 周金龍,2005,”熱鍛模具磨損分析與鍛造參數設計最佳化研究”,博士論文,國立成功大學。
[44] R.S.Lee., and J,L. Jou .,2003, “Application of numerical simulation for wear analysis of warm forging die“, Journal of Materials Processing Technology,Vol.140,pp.43-48
[45] Z.Gao.,X.Deng.,F.Chen.,T.Li“Die Service Life Estimation Based on Modified Archard Method in Forging Spiral Bevel Gear“,中國機械工程,2014
[46] Painter,B.,R.Shivpuri and T.Altan, “Prediction of Die Wear During Hot-Extrusion of Engine Valves”,Journal of Materials Processing Technology,Vol.59,pp.132-143,1996
[47] Han, X., Hua, L. “Prediction of contact pressure,slip distance and wear in cold rotary forging using finite element methods”Tribol.Int.2011,44,1742-1753
[48] Liying,D.,Xinghui,Han.,Lin Hua and Wuhao Zhuang “Effects of the rotation speed ratio of double eccentricity bushings on rocking tool path in a cold rotary forging press”,Journal of Mechanical Science and Technology,
[49] Zhuang,W., Hua,L., Han, X., and Dong,L.,2014“Distribution of Microstructure and Vickers Hardness in Spur Bevel Gear Formed by Cold Rotary Forging” Advances in Mechanical Engineering ,Vol.2014, Article ID 809276, 13 pp
[50] X. Chen, G. Chen, “Study on Die Wear of Crankshaft Based on Archard Theory,” Hot Working Technology,vol.42,no.7,2013
[51] V. Patil Basavaraj, U. Chakkingal and T. S. Prasanna Kumar, ”Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation,” Journal of materials processing technology, vol. 209, no. 1, pp. 89-95, 2009.
[52] Tingting,Li.,Guoqun,Zhao.,Cunsheng,Zhang.,Yanjin,Guan.,Xuemei,Sun.,and Hengkui,Li. , “Effect of Process Parameters on Die Wear Behavior of Aluminum Alloy Rod Extrusion” Materials and Manufacturing Processes ,PP.312-318 , 2013
指導教授 葉維磬(Wei-Ching Yeh) 審核日期 2017-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明