博碩士論文 104323021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:52.14.164.100
姓名 林廷緯(Ting-Wei Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鍶錳酸鑭鍍層對固態氧化物燃料電池接合件潛變性質之影響
(Effects of LSM Coating on the Creep Properties of Joints in Solid Oxide Fuel Cell)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的在探討鍶錳酸鑭鍍層對於固態氧化物燃料電池玻璃陶瓷接合劑和金屬連接板接合件的潛變性質與破壞模式之影響,所使用的玻璃陶瓷為核能研究所開發一款代號為GC-9的材質,LSM鍍層材質為La0.67Sr0.33MnO3,金屬連接板則是使用代號為Crofer 22 H的商用肥粒鐵系不銹鋼。在800 °C的氧化環境下,對於接合件施予剪力及張力固定負載來進行潛變實驗並量測其室溫及800 °C下的張力與剪力強度,同時評估氧化環境時效處理對接合件機械強度及潛變性質的影響,並比較未含有鍍層及含有鍍層接合件之高溫機械強度與潛變性質的差異。
實驗結果顯示,含有LSM鍍層與未含有LSM鍍層的未時效試片相比較,其剪力強度在常溫及800 °C分別下降約78%與92%,而張力強度在常溫及800 °C分別下降約59%與72%。試片在高溫接合過程中,鑭元素從LSM鍍層中擴散並與GC-9玻璃陶瓷反應生成稀土氧基磷灰石層(Ca2La8(SiO4)6O2)。此氧化層的形成及結晶化後的結構體積收縮以及與GC-9玻璃陶瓷和Crofer 22 H的熱膨脹係數不匹配導致微孔洞的產生,進而主導了接合件的破裂模式。另一方面,潛變試驗的結果顯示不論在未時效及1000小時時效處理後,接合件於800 °C氧化環境下的剪力及張力潛變壽命皆隨著負載減少而增加。未時效剪力試片具1000小時壽命的潛變強度約為剪力接合件強度的42%,而未時效張力試片具1000小時壽命的潛變強度則約為張力接合件強度的3%。與未時效且未含有鍍層之接合件相比,含有LSM鍍層之接合件具1000小時壽命的剪力及張力潛變強度分別下降約85%與89%。含有LSM鍍層的張力與剪力接合件,隨著潛變時間增加,由破裂於氧基磷灰石層中,轉變為氧基磷灰石與鉻酸鋇(BaCrO4)的介面。
經1000小時氧化環境時效處理後,含有LSM鍍層的接合件其剪力強度不論在常溫及高溫下皆提升,相同的時效處理提升了常溫下的張力強度卻降低了其高溫下的機械強度。在潛變強度方面,時效剪力試片具1000小時壽命的潛變強度較未時效試片提升約13%,而時效張力試片具1000小時壽命的潛變強度較未時效試片提升約216%。藉由觀察破斷面微結構發現,時效張力試片在高溫下的破裂位置由氧基磷灰石與鉻酸鋇的介面,轉變為氧基磷灰石與尖晶石((Cr,Mn)3O4)的介面。此現象顯示氧基磷灰石與尖晶石的介面對張應力較為敏感,並在承受張應力時為接合件中最為脆弱的介面層。對於時效處理試片而言,氧基磷灰石與鉻酸鋇層主導了時效剪力試片的潛變破裂模式,而對於張應力較敏感的尖晶石層則與其他氧化層同時主導了時效張力試片的潛變破裂模式。
摘要(英)
The objective of this study is to investigate the effect of LSM coating on the creep properties of a SOFC joint between a glass-ceramic sealant and an interconnect steel with no and 1000-h thermal aging in air. The materials used are a GC-9 glass-ceramic sealant developed at the Institute of Nuclear Energy Research and a commercial Crofer 22 H ferritic steel. The creep test is conducted by applying a constant load (shear or tensile mode) on the joint at 800 °C. Comparison of the joint strength and creep properties between LSM-coated and non-coated specimens is also made for the non-aged condition.
With the LSM coating, the shear strength of the non-aged joint specimen is reduced by 78% and 92% at RT and 800 °C, respectively. On the other hand, the tensile strength of the joint is reduced by 59% and 72% at RT and 800 °C, respectively. During the joining process, La diffuses out from LSM film and reacts with GC-9 to form a rare-earth oxyapatite ceramic. Volume shrinkage during crystallization of oxyapatite and thermal mismatch at high operation temperature lead to the formation of microcracks and the fracture is mainly related to this oxyapatite phase.
The creep rupture time of LSM-coated joint is increased with a decrease in the applied constant shear and tensile loading at 800 °C regardless of thermal aging condition. The shear creep strength of non-aged joint at 1000 h in air is about 42% of the average shear strength, while the tensile creep strength at 1000 h is only about 3% of the average tensile strength. Compared to the non-aged, non-coated specimens, the creep strength at 1000 h for the LSM-coated shear and tensile specimens is significantly reduced by 85% and 89% at 800 °C, respectively. For both non-aged shear and tensile specimens with a short creep rupture time less than 100 h, fracture mainly takes place in the oxyapatite layer. For a medium-term creep rupture time (100 h < tr < 1000 h), fracture site changes from the oxyapatite interlayer to the mixed oxyapatite/BaCrO4 layer with an increase of creep rupture time to exceed 100 h.
A thermal aging treatment at 800 °C for 1000 h significantly enhances the joint strength of shear specimen at RT and 800 °C. However, a similar thermal aging treatment enhances the joint strength of tensile specimen at RT but degrades it at 800 °C. For tensile loading mode, fracture site changes from the interface between GC-9/oxyapatite and BaCrO4 to the interface between GC-9/oxyapatite and (Cr,Mn)3O4 when the testing temperature increases from RT to 800 °C. The interface between GC-9/oxyapatite and (Cr,Mn)3O4 becomes the weakest path when subjected to tensile loading at high temperature.
After 1000-h thermal aging, the shear and tensile creep strength at 1000 h of the thermally aged joint is enhanced by 13% and 216%, respectively, compared to the non-aged counterparts. Oxyapatite and BaCrO4 dominate the creep failure mechanism for 1000 h-aged shear specimens, while the (Cr,Mn)3O4 spinel layer becomes thicker after thermal aging and might also play a role in the creep failure of 1000-h aged tensile specimens in addition to the oxyapatite and BaCrO4 phases.
關鍵字(中) ★ 固態氧化物燃料電池
★ 封裝玻璃陶瓷
★ 連接板
★ 鍶錳酸鑭鍍層
★ 潛變
關鍵字(英) ★ Solid oxide fuel cell
★ Glass-ceramic sealant
★ Interconnect
★ LSM coating
★ Creep
論文目次
1. INTRODUCTION 1
1.1. Solid Oxide Fuel Cell 1
1.2. Glass Sealant 2
1.3. Protective Coating on Metallic Interconnect 5
1.4. Joint of Glass-Ceramic Sealant and Metallic Interconnect 8
1.5. Creep of Joint of Glass-Ceramic Sealant and Metallic Interconnect 10
1.6. Purpose 12
2. MATERIALS AND EXPERIMENTAL PROCEDURES 14
2.1. Materials and Specimen Preparation 14
2.2. Mechanical Testing 16
2.2.1. Tensile test 16
2.2.2. Creep test 16
2.3. Microstructural Analysis 16
3. RESULTS AND DISCUSSION 18
3.1. Non-aged Joint of Glass-Ceramic Sealant and LSM-Coated Metallic Interconnect 18
3.1.1. Joint strength 18
3.1.2. Creep rupture behavior 22
3.1.3. Failure analysis 23
3.2. Aged Joint of Glass-Ceramic Sealant and LSM-Coated Metallic Interconnect 25
3.2.1. Joint strength 25
3.2.2. Creep rupture behavior 28
3.2.3. Failure analysis 29
3.3. Effect of LSM Coating on Joint Strength and Creep Rupture Behavior 31
3.4. Effects of Thermal Aging on LSM-Coated Joint 32
3.5. Overall Comparison of Fracture Site 33
4. CONCLUSIONS 36
REFERENCES 39
TABLES 45
FIGURES 48
參考文獻
1. K. Kendall, N. Q. Minh, and S. C. Singhal, “Fuels and Fuel Processing,” Chapter 12 in High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, edited by S. C. Singhal and K. Kendall, Elsevier, Kidlington, UK, 2003.
2. W. Z. Zhu and S. C. Deevi, “A Review on the Status of Anode Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering: A, Vol. 362, pp. 228-239, 2003.
3. P. A. Lessing, “A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells,” Journal of Materials Science, Vol. 42, pp. 3465-3476, 2007.
4. X.-V. Nguyen, C.-T. Chang, G.-B. Jung, S.-H. Chan, W.-T. Lee, S.-W. Chang, and I. C. Kao, “Study of Sealants for SOFC,” International Journal of Hydrogen Energy, Vol. 41, pp. 21812-21819, 2016.
5. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, pp. 46-57, 2005.
6. R. N. Singh, “Sealing Technology for Solid Oxide Fuel Cells (SOFC),” International Journal of Applied Ceramic Technology, Vol. 4, pp. 134-144, 2007.
7. S. Le, Z. Shen, X. Zhu, X. Zhou, Y. Yan, K. Sun, N. Zhang, Y. Yuan, and Y. Mao, “Effective Ag–Cuo Sealant for Planar Solid Oxide Fuel Cells,” Journal of Alloys and Compounds, Vol. 496, pp. 96-99, 2010.
8. A. G. Sabato, G. Cempura, D. Montinaro, A. Chrysanthou, M. Salvo, E. Bernardo, M. Secco, and F. Smeacetto, “Glass-Ceramic Sealant for Solid Oxide Fuel Cells Application: Characterization and Performance in Dual Atmosphere,” Journal of Power Sources, Vol. 328, pp. 262-270, 2016.
9. D. U. Tulyaganov, A. A. Reddy, V. V. Kharton, and J. M. F. Ferreira, “Aluminosilicate-Based Sealants for SOFCs and Other Electrochemical Applications − a Brief Review,” Journal of Power Sources, Vol. 242, pp. 486-502, 2013.
10. K. D. Meinhardt, D. S. Kim, Y. S. Chou, and K. S. Weil, “Synthesis and Properties of a Barium Aluminosilicate Solid Oxide Fuel Cell Glass–Ceramic Sealant,” Journal of Power Sources, Vol. 182, pp. 188-196, 2008.
11. C.-K. Liu, T.-Y. Yung, and K.-F. Lin, “Isothermal Crystallization Properties of SiO2-B2O3-Al2O3-BaO Glass,” Proceedings of the Annual Conference of the Chinese Ceramic Society (CD-ROM), 2008. (in Chinese)
12. C.-K. Liu, T.-Y. Yung, S.-H. Wu, and K.-F. Lin, “Study on a SiO2-B2O3-Al2O3-BaO Glass System for SOFC Applications,” Proceedings of the MRS_Taiwan Annual Meeting (CD-ROM), 2007. (in Chinese)
13. C.-K. Liu, T.-Y. Yung, and K.-F. Lin, “Effect of La Addition on the Thermal and Crystalline Properties of SiO2-B2O3-Al2O3-BaO Glasses,” Proceedings of the Annual Conference of the Chinese Ceramic Society (CD-ROM), 2007. (in Chinese)
14. H.-T. Chang, “High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell,” Ph.D. Thesis, National Central University, 2010.
15. J. C. W. Mah, A. Muchtar, M. R. Somalu, and M. J. Ghazali, “Metallic Interconnects for Solid Oxide Fuel Cell: A Review on Protective Coating and Deposition Techniques,” International Journal of Hydrogen Energy, Vol. 42, pp. 9219-9229, 2017.
16. N. Shaigan, W. Qu, D. G. Ivey, and W. Chen, “A Review of Recent Progress in Coatings, Surface Modifications and Alloy Developments for Solid Oxide Fuel Cell Ferritic Stainless Steel Interconnects,” Journal of Power Sources, Vol. 195, pp. 1529-1542, 2010.
17. J. Xiao, W. Zhang, C. Xiong, B. Chi, J. Pu, and L. Jian, “Oxidation Behavior of Cu-Doped MnCo2O4 Spinel Coating on Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnects,” International Journal of Hydrogen Energy, Vol. 41, pp. 9611-9618, 2016.
18. R. K. Lenka, P. K. Patro, J. Sharma, T. Mahata, and P. K. Sinha, “Evaluation of La0.75Sr0.25Cr0.5Mn0.5O3 Protective Coating on Ferritic Stainless Steel Interconnect for SOFC Application,” International Journal of Hydrogen Energy, Vol. 41, pp. 20365-20372, 2016.
19. A. Harthøj, T. Holt, and P. Møller, “Oxidation Behaviour and Electrical Properties of Cobalt/Cerium Oxide Composite Coatings for Solid Oxide Fuel Cell Interconnects,” Journal of Power Sources, Vol. 281, pp. 227-237, 2015.
20. M. Palcut, L. Mikkelsen, K. Neufeld, M. Chen, R. Knibbe, and P. V. Hendriksen, “Improved Oxidation Resistance of Ferritic Steels with LSM Coating for High Temperature Electrochemical Applications,” International Journal of Hydrogen Energy, Vol. 37, pp. 8087-8094, 2012.
21. S.-S. Pyo, S.-B. Lee, T.-H. Lim, R.-H. Song, D.-R. Shin, S.-H. Hyun, and Y.-S. Yoo, “Characteristic of (La0.8Sr0.2)0.98MnO3 Coating on Crofer22APU Used as Metallic Interconnects for Solid Oxide Fuel Cell,” International Journal of Hydrogen Energy, Vol. 36, pp. 1868-1881, 2011.
22. S. Lee, C.-L. Chu, M.-J. Tsai, and J. Lee, “High Temperature Oxidation Behavior of Interconnect Coated with LSCF and LSM for Solid Oxide Fuel Cell by Screen Printing,” Applied Surface Science, Vol. 256, pp. 1817-1824, 2010.
23. C. Chu, J. Lee, T. Lee, and Y. Cheng, “Oxidation Behavior of Metallic Interconnect Coated with La–Sr–Mn Film by Screen Painting and Plasma Sputtering,” International Journal of Hydrogen Energy, Vol. 34, pp. 422-434, 2009.
24. C. Lee and J. Bae, “Oxidation-Resistant Thin Film Coating on Ferritic Stainless Steel by Sputtering for Solid Oxide Fuel Cells,” Thin Solid Films, Vol. 516, pp. 6432-6437, 2008.
25. D.-J. Jan, C.-T. Lin, and C.-F. Ai, “Structural Characterization of La0.67Sr0.33MnO3 Protective Coatings for Solid Oxide Fuel Cell Interconnect Deposited by Pulsed Magnetron Sputtering,” Thin Solid Films, Vol. 516, pp. 6300-6304, 2008.
26. Z. Yang, G.-G. Xia, G. D. Maupin, and J. W. Stevenson, “Conductive Protection Layers on Oxidation Resistant Alloys for SOFC Interconnect Applications,” Surface and Coatings Technology, Vol. 201, pp. 4476-4483, 2006.
27. J. H. Zhu, M. J. Lewis, S. W. Du, and Y. T. Li, “CeO2-Doped (Co,Mn)3O4 Coatings for Protecting Solid Oxide Fuel Cell Interconnect Alloys,” Thin Solid Films, Vol. 596, pp. 179-184, 2015.
28. J. Xiao, W. Zhang, C. Xiong, B. Chi, J. Pu, and L. Jian, “Oxidation of MnCu0.5Co1.5O4 Spinel Coated Sus430 Alloy Interconnect in Anode and Cathode Atmospheres for Intermediate Temperature Solid Oxide Fuel Cell,” International Journal of Hydrogen Energy, Vol. 40, pp. 1868-1876, 2015.
29. Z. Yang, G. Xia, X. Li, and J. Stevenson, “(Mn,Co)3O4 Spinel Coatings on Ferritic Stainless Steels for SOFC Interconnect Applications,” International Journal of Hydrogen Energy, Vol. 32, pp. 3648-3654, 2007.
30. J. G. Grolig, P. Alnegren, J. Froitzheim, and J.-E. Svensson, “Copper Iron Conversion Coating for Solid Oxide Fuel Cell Interconnects,” Journal of Power Sources, Vol. 297, pp. 534-539, 2015.
31. C.-K. Lin, Y.-A. Liu, S.-H. Wu, C.-K. Liu, and R.-Y. Lee, “Joint Strength of a Solid Oxide Fuel Cell Glass–Ceramic Sealant with Metallic Interconnect in a Reducing Environment,” Journal of Power Sources, Vol. 280, pp. 272-288, 2015.
32. C.-K. Lin, W.-H. Shiu, S.-H. Wu, C.-K. Liu, and R.-Y. Lee, “Interfacial Fracture Resistance of the Joint of a Solid Oxide Fuel Cell Glass–Ceramic Sealant with Metallic Interconnect,” Journal of Power Sources, Vol. 261, pp. 227-237, 2014.
33. C.-K. Lin, K.-L. Lin, J.-H. Yeh, S.-H. Wu, and R.-Y. Lee, “Creep Rupture of the Joint of a Solid Oxide Fuel Cell Glass–Ceramic Sealant with Metallic Interconnect,” Journal of Power Sources, Vol. 245, pp. 787-795, 2014.
34. J. Chen, H. Yang, R. Chadeyron, D. Tang, and T. Zhang, “Tuning the Interfacial Reaction Between CaO–SrO–Al2O3–B2O3–SiO2 Sealing Glass–Ceramics and Cr-Containing Interconnect: Crystalline Structure vs. Glass Structure,” Journal of the European Ceramic Society, Vol. 34, pp. 1989-1996, 2014.
35. C.-K. Lin, J.-Y. Chen, J.-W. Tian, L.-K. Chiang, and S.-H. Wu, “Joint Strength of a Solid Oxide Fuel Cell Glass–Ceramic Sealant with Metallic Interconnect,” Journal of Power Sources, Vol. 205, pp. 307-317, 2012.
36. F. Smeacetto, A. De Miranda, S. Cabanas Polo, S. Molin, D. Boccaccini, M. Salvo, and A. R. Boccaccini, “Electrophoretic Deposition of Mn1.5Co1.5O4 on Metallic Interconnect and Interaction with Glass-Ceramic Sealant for Solid Oxide Fuel Cells Application,” Journal of Power Sources, Vol. 280, pp. 379-386, 2015.
37. M. K. Mahapatra and K. Lu, “Seal Glass Compatibility with Bare and (Mn,Co)3O4 Coated Crofer 22 Apu Alloy in Different Atmospheres,” Journal of Power Sources, Vol. 196, pp. 700-708, 2011.
38. J. P. Choi, K. S Weil, Y. M Chou, J. W. Stevenson, and Z. G. Yang, “Development of MnCoO Coating with New Aluminizing Process for Planar SOFC Stacks,” International Journal of Hydrogen Energy, Vol. 36, pp. 4549-4556, 2011.
39. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,” Journal of Power Sources, Vol. 192, pp. 515-524, 2009.
40. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, pp. 238-251, 2007.
41. J. Malzbender, J. Mönch, R. W. Steinbrech, T. Koppitz, S. M. Gross, and J. Remmel, “Symmetric Shear Test of Glass-Ceramic Sealants at SOFC Operation Temperature,” Journal of Materials Science, Vol. 42, pp. 6297-6301, 2007.
42. F. Smeacetto, M. Salvo, M. Ferraris, V. Casalegno, P. Asinari, and A. Chrysanthou, “Characterization and Performance of Glass–Ceramic Sealant to Join Metallic Interconnects to YSZ and Anode-Supported-Electrolyte in Planar SOFCs,” Journal of the European Ceramic Society, Vol. 28, pp. 2521-2527, 2008.
43. J.-H. Yeh, “Analysis of High-Tenperature Mechanical Durability for the Joint of Glass Ceramic Sealant and Metallic Interconnect for Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2011.
44. N. E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, 4th Ed., Prentice Hall, New Jersey, USA, 2012.
45. M. G. Makowska, L. T. Kuhn, H. L. Frandsen, E. M. Lauridsen, S. De Angelis, L. N. Cleemann, M. Morgano, P. Trtik, and M. Strobl, “Coupling between Creep and Redox Behavior in Nickel - Yttria Stabilized Zirconia Observed in-Situ by Monochromatic Neutron Imaging,” Journal of Power Sources, Vol. 340, pp. 167-175, 2017.
46. L. Esposito, D. N. Boccaccini, G. P. Pucillo, and H. L. Frandsen, “Secondary Creep of Porous Metal Supports for Solid Oxide Fuel Cells by a CDM Approach,” Materials Science and Engineering: A, Vol. 691, pp. 155-161, 2017.
47. H. L. Frandsen, M. Makowska, F. Greco, C. Chatzichristodoulou, D. W. Ni, D. J. Curran, M. Strobl, L. T. Kuhn, and P. V. Hendriksen, “Accelerated Creep in Solid Oxide Fuel Cell Anode Supports During Reduction,” Journal of Power Sources, Vol. 323, pp. 78-89, 2016.
48. C.-K. Lin, K.-L. Lin, J.-H. Yeh, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, “Aging Effects on High-Temperature Creep Properties of a Solid Oxide Fuel Cell Glass-Ceramic Sealant,” Journal of Power Sources, Vol. 241, pp. 12-19, 2013.
49. Y.-T. Chiu and C.-K. Lin, “Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect,” Journal of Power Sources, Vol. 198, pp. 149-157, 2012.
50. J. Wei, G. Pećanac, and J. Malzbender, “Mechanical Behavior of Silver Reinforced Glass–Ceramic Sealants for Solid Oxide Fuel Cells,” Ceramics International, Vol. 41, pp. 15122-15127, 2015.
51. Y.-T. Chiu, C.-K. Lin, and J.-C. Wu, “High-Temperature Tensile and Creep Properties of a Ferritic Stainless Steel for Interconnect in Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 196, pp. 2005-2012, 2011.
52. H.-L. Hsu, “Environmental Effects on the Creep Properties of Joints in Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2015.
53. F.-L. Hou, “Effect of LSM Coating on Joining Strength Between Metallic Interconnect and Galss-Ceramic Sealant for Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2015.
54. Y.-T. Chiu, “Creep and Thermo-Mechanical Fatigue Properties of Ferritic Stainless Steels for Use in Solid Oxide Fuel Cell Interconnect,” Ph.D. Thesis, National Central University, 2012.
55. C.-K. Liu, T.-Y. Yung, K.-F. Lin, R.-Y. Lee, and T.-S. Lee, Glass-Ceramic Sealant for Planar Solid Oxide Fuel Cells, United States Patent No.7,897,530 B2, 2011.
56. J.-Y. Chen, “Analysis of Mechanical Properties for the Joint of Metallic Interconnect and Glass Ceramic in Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2010.
57. E. Apel, W. Höland, H. C. Van′t, U. Bolle, and V. M. Rheinberger, Apatite Glass Ceramic Based on Siliceous Oxyapatites, United States Patent No. 7,166,548 B2, 2007.
58. P. Yang, C.-K. Liu, J.-Y. Wu, W.-J. Shong, R.-Y. Lee, and C.-C. Sung, “Effects of Pre-Oxidation on the Microstructural and Electrical Properties of La0.67Sr0.33MnO3-d Coated Ferritic Stainless Steels,” Journal of Power Sources, Vol. 213, pp. 63-68, 2012.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2017-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明