博碩士論文 104323046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.220.6.150
姓名 林家瑋(Jia-Wei Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鑄鍛與陽極處理對Al-1.2Mg-1.0Si-1.0Cu合金的機械性質與疲勞性質研究
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用鑄/鍛生產Al-1.2Mg.1.0Si-1.0Cu合金。合金透過熔煉和澆注到Y型模具形成鑄件。經過均質化處理後,試塊會將冒口端切除,並在193K的溫度下放置600秒。將冷凍下來的鑄件,經過變形量50%的鍛造變形。鍛造完的試塊,經過T6熱處理後,將試塊熱加工成拉伸試棒,經過疲勞測試後得到抗拉強度420MPa,延伸率12%的拉伸性質。本研究會探討微結構與機械性質的關係。將有/無陽極的後的疲勞試棒,使用旋轉彎曲疲勞試驗機進行疲勞測試,測量在1 × 107圈數下的疲勞強度,並且建立疲勞曲線與比較有/無陽極處理的疲勞性質。在1 × 107壽命下,疲勞強度為117MPa,陽極過後的疲勞強度為110MPa。本實驗利用SEM觀察疲勞破斷面,紀錄破裂型態與計算裂紋起始的面積。結果,本實驗觀察反覆應力在120MPa下的疲勞破斷試棒,獲得裂紋起始的應力強度因子(△Kini)為1.97MPa√m。
摘要(英) Cast/forging process was used to produce Al-1.2Mg-1.0Si- 1.0Cu alloy samples in this study. The alloy was melt and poured to get Y-block castings. After homogenization treatment, the block samples were cut to remove top risers and at 193 K (dry ice) for 600 s. The frozen casting blocks were forged by a set of open die to produce 50 % reduction in thickness. After T6 heat treatment the forged blocks were machined to get tensile specimens and then tested to obtain tensile properties of UTS of 420 MPa and an elongation of 12%. Relations of microstructure and mechanical properties were discussed in this study. Parts of specimen with/ without anodization were prepared for running high-cycle fatigue test up to 1 × 107 cycles. The stress (S)-cycle life (N) curves of samples with/without anodization were constructed and compared. The former sample displayed fatigue strength of 117 MPa and the latter samples yielded fatigue strength of 110MPa at 1 × 107 life cycles. SEM was used to observe fracture surface of samples. The fractured morphologies were recorded and used for computing crack initiation area. As a result, stress intensity factor for crack initiation (ΔKinit) was obtained as 1.97 MPa√m (1 × 106) at 120 MPa stress amplitude.
關鍵字(中) ★ 鑄/鍛
★ 疲勞
★ 應力強度因子△K
關鍵字(英)
論文目次 摘要 I
Abstract II
圖目錄 V
表目錄 IX
第一章 前言 1
第二章 文獻回顧 2
2-1 鑄/鍛鋁合金的簡介 2
2-2 鋁合金中 Mg,Si,Cu 等元素對析出行為的影響 5
2-2-1 Al-Mg-Si 合金簡介 5
2-2-2 Al-Mg-Si-Cu 簡介 8
2-2-3 Al-Mg-Si-Cu 鑄造合金均質化處理對微結構的影響 10
2-3 鋁合金的疲勞破壞 12
2-3-1 疲勞破壞的過程 12
2-3-2 疲勞裂紋的傳播 13
2-3-3 旋轉式疲勞介紹 15
2-3-4 疲勞行為時的晶界角度變化 16
2-3-5 高/低晶界角度對裂紋生長影響 20
2-3-6 疲勞裂紋成長速率與應力強度因子介紹 21
2-3-7 動態析出物對疲勞壽命的影響 28
2-4 鋁合金陽極處理 29
2-4-1 合金元素對鋁合金陽極氧化膜的影響 31
2-4-2 陽極處理對疲勞壽命的影響 31

第三章 實驗步驟 34
3-1 實驗材料 34
3-2 實驗儀器 34
3-3 試棒尺寸與模具 36
3-4 實驗步驟 38
第四章 結果與討論 44
4-1 Al-Mg-Si-Cu-Zr 合金的熱處理參數對微結構的影響 44
4-2 鑄/鍛 Al-Mg-Si-Cu-Zr 合金的機械性質 48
4-3 鑄/鍛 Al-Mg-Si-Cu-Zr 合金的巨觀組織 49
4-4 XRD 分析 52
4-5 鑄/鍛 Al-Mg-Si-Cu-Zr 合金的微觀組織 53
4-6 疲勞測試前/後基地巨觀組織變化 54
4-7 陽極皮膜對 Al-Si-Cu-Mg-Zr 合金的疲勞性質影響 56
4-8 鑄/鍛 Al-Mg-Si-Cu-Zr 合金疲勞破斷面分析 59
4-9 應力強度因子計算 68
4-10 應力強度因子分析 69
4-11 鑄/鍛 Al-Mg-Si-Cu-Zr 合金的腐蝕電位及電流分析 72
第五章 綜論 77
第六章 結論 81
參考文獻 82
參考文獻 1.F.C. Chang, W.S. Hwang, C.H. Lee, C.F. Wu and J.B. Yang,
“Forging condition for removing porosities in the hybrid
casting and forging process of 7075 aluminum alloy
casting”, Materials Transactions, Vol.45, pp.1886-1890,
2004.
2.S. Fujikawa, Y. Kitamura and S. Shimamura, “Application of
numerical methods for the aluminum casting/forging
process”, Journal of Materials Processing Technology,
Vol.27, pp.93-110, 1991.
3.日本輕金屬學會委員“鋁合金之組織與性質”,日本輕金屬學
會,pp278-279,1991。
4.L. Zhen, W.D. Fei, S.B. Kang and H.W. Kim, “Precipitation
behaviour of Al-Mg-Si alloys with high silicon content”,
Journal of Materials science, pp.1895-1902,1997.
5.M. Takeda, F. Ohkubo, T. Shirai and K. Fukui,
“Precipitation behavior of Al-Mg-Si ternary alloys”,
Materials Science Forum, Vol.217-222, pp.815-820, 1996.
6.G.A. Edwards, K. Stiller, G.L. Dunlop and M.J. Couper,
“The precipitation Sequence in Al-Mg-Si alloys”, Acta
mater, Vol.46, No. 11, pp.3893-3904, 1998.
7.D.J. Chakrabarti and D.E. Laughlin, “Phase relations and
precipitation in Al-Mg-Si alloys with Cu additions”,
Progress in Materials Science, Vol.49, pp.389-410, 2004.
8.K. Matsuda, D. Teguri, Y. Uetani, T. Sato and S. Ikeno,
“Cu-segregation at the Q′/α-Al interface in Al-Mg-Si-Cu
alloy”, Scripta Materialia, pp.833-837, 2002.
9.K. Matsuda, D. Teguri, T. Sato, Y. Uetani and S. Ikeno,
“Cu segregation around metastable phase in Al-Mg-Si Alloy
with Cu”, Materials Transactions, Vol.48, No. 5,
pp.967-974, 2007.
10.Y. Birol, “Precipitation during homogenization cooling in
AlMgSi alloys”, Transactions of Nonferrous Metals Society
of China, Vol.23, pp.1875-1881, 2013.
11.A. Woznicki, D. Lesniak, G. Wloch and B. Leszczynska-
Madej, A. Wojtyna,“The effect of homogeneous conditions
on the structure and properties of 6082 alloy billets”,
Archives of Metallurgy and Materials, Vol.60, 2015.
12.A.K. Vasudevan and R.D. Doherty, “Grain boundary ductile
fracture in precipitation hardened aluminum alloys”, Acta
Metallurgica, Vol.35, pp.1193-1219, 1987.
13.Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z.
Yuan, Y. Liu, Y. He and F. Y. Xie, “Diffusion
coefficients of some solutes in fcc and liquid Al:
critical evaluation and correlation”, Materials Science
and Engineering, Vol.A363, pp.140-151, 2003.
14.M. Nicolas, “Precipitation evolution in an Al-Zn-Mg alloy
during non-isothermal heat treatments and in the heat-
affected zone of welded joints”, Institut National
Polytechnique de Grenoble, pp.144-148, 2002.
15.B. Ihsan, “Thermochemical data of pure substances”,
Weinheim, 1995.
16.T. Yabe, M. Enoki and H. Ohtani, “Thermodynamic analysis
of phase separation in the Al-Cu binary fcc phase”,
Journal of the Japan Institute of Metals, Vol.80,
pp.370-378, 2016.
17.B. Pyttel, D. Schwerdt and C. Berger, “Very high cycle
fatigue – Is there a fatigue limit?”, International
Journal of Fatigue, Vol.33, pp.49-58, 2011.
18.T. Sakai, Y. Sato and N. Oguma, “Characteristic S-N
properties of high-carbon-chromium-bearing steel under
axial loading in long-life fatigue”, Fatigue & Fracture
of Engineering Materials & Structures, Vol.25, pp.765-773,
2002.
19.Y. Takahashi, T. Shikama, S. Yoshihara, T. Aiura and H.
Noguchi “Study on dominant mechanism of high-cycle
fatigue life in 6066-T6 aluminum alloy through
microanalyses of microstructurally small cracks”, Acta
Materialia, Vol.60, pp.2554-2567, 2012.
20.T. Shikama, Y. Takahashi, L. Zeng, S. Yoshihara, T. Aiura,
K.Higashida and H. Noguchi, “Distinct fatigue crack
propagation limit of new precipitation-hardened
aluminum alloy”, Scripta Materialia, Vol.67, Issue 1,
pp.49-52, 2012.
21.T. Zhai, X.P. Jiang, J.X. Li, M.D. Garratt, G.H. Bray,
“The grain boundary geometry for optimum resistance to
growth of short fatigue cracks in high
strength Al-alloys”, International Journal of Fatigue,
Vol.27, pp.1202-1209, 2005.
22.M. Cabibbo, E. Evangelista and M. Vedani, “Influence of
severe plastic deformations on secondary phase
precipitation in a 6082 Al-Mg-Si alloy”, Metallurgical
and Materials Transactions A, Vol.36, Issue.5,
pp.1353-1364, 2005.
23.M. Cabibbo, “Microstructure strengthening mechanisms in
different equal channel angular pressed aluminum alloys”,
Materials Science & Engineering: A, Vol.560, pp.413-432,
2013.
24.R.E. Reed-Hill, “Alternating stress parameters”,
Physical Metallurgy Principles 3^th Edition, pp.710-713,
2010.
25.S.K. Panigrahi, R. Jayaganthan and V. Pancholi, “Effect
of plastic deformation conditions on microstructural
characteristics and mechanical properties of Al
6063 alloy”, Materials and Design, Vol.30, pp.1894-1901,
2009.
26.S.K. Panigrahi, R. Jayaganthan and V. Chawla, “Effect of
cryorolling on microstructure of Al-Mg-Si alloy”,
Materials Letters, Vol.62, pp.2626-2629, 2008.
27.楊樺成, 「深冷變形與陽極處理對6066-T6機械性質的影響」, 國
立中央大學, 碩士論文, 民國104年.
28.T.S. Shih, H.S. Yong and W.N. Hsu, “Effect of cryogenic
forging and anodization on the mechanical properties and
corrosion resistance of AA6066-T6 aluminum alloys”,
Metals, Vol.6,2016.
29.J.A. Nucci, R.R. Keller, D.P. Field and Y. Shacham-
Diamand, “Grain boundary misorientation angles and
stress-induced voiding in oxide passivated copper
interconnects”, Applied Physics Letters, Vol.70,
pp.1242-1244, 1997.
30.M.H. Huang, M. Liao and J.A. Szpunar, “Fatigue cracking
behavior in aluminum 7050”, 12th International Conference
on Fracture 2009, Vol.7, pp.5290-5298, 2009.
31.P. Paris and F. Erdogan, “A critical analysis of crack
propagation laws”, Journal of Basic Engineering, Vol.85,
pp.528-534, 1962.
32.R.O. Ritchie, “Near-threshold fatigue-crack propagation
in steels”, International Metals Reviews, pp.205-230,
1979.
33.R.O. Ritchie and S. Suresh, “Some considerations on
fatigue crack closure at near-threshold stress intensities
due to fracture surface morphology”, Metallurgical
Transactions A, Vol.13A, pp.937-940, 1982.
34.W.C. Connors, “Fatigue striation spacing analysis”,
Materials Characterization, Vol.33, pp.245-253.1994.
35.K. Shiozawa, L.L. Tao and S. Ishihara, “Subsurface
fatigue crack initiation behavior and S-N curve
characteristics in high carbon-chromium bearing steel”,
材料, Vol.48, pp.1095-1100, 1999.
36.K. Shiozawq, L. Lu and S. Ishihara, “S-N curve
characteristics and subsurface crack initiation behavior
in ultra-long life fatigue of a high carbon-chromium
bearing steel”, Fatigue & Fracture of Engineering
Materials & Structures, Vol.24, pp.781-790, 2001.
37.M.D. Freitas, L. Reis, M.D. Fonte and B. Li, “Effect of
steady torsion on fatigue crack initiation and propagation
under rotating bending : Multiaxial fatigue and mixed-mode
cracking”, Engineering Fracture Mechanics, Vol.78,
pp.826-835, 2011.
38.Y. Murakami, S. Kodama and S. Konuma, “Quantitative
evaluation of effects of non-metallic inclusions on
fatigue strength of high strength steels. I:Basic fatigue
mechanism and evaluation of correlation between the
fatigue fracture stress and the size and location of non-
metallic inclusions”, International Journal of Fatigue,
Vol.11, pp.291-298, 1989.
39.W.Z. Han, Y. Chen, A. Vinogradov and C.R. Hutchinson,
“Dynamic precipitation during cyclic deformation of an
underaged Al-Cu alloy”, Materials Science and Engineering
A, Vol.528, Issue.24, pp.7410-7416, 2011.
40.C.C. Chen, J.H. Chen and C.G. Chao, “Post-treatment
method of producing ordered array of anodic aluminum oxide
using general purity commercial(99.7%) aluminum”,
Japanese Journal of Applied Physics, Vol.44, pp.1529-1533,
2005.
41.H. Masuda and F. Hasegwa, “Self-ordering of cell
arrangement of anodic porous alumina formed in sulfuric
acid solution”, J. Electrochem. Soc., Vol.144, L127-L130,
1997.
42.K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K.
Nielsch and U. Gosele, “Self-ordered anodic aluminum
oxide formed by H_2 SO_4 hard anodization”, ACS Nano,
Vol.2, pp.302-310, 2008.
43.M. Noormohammadi and M. Moradi, “Structural engineering
of nanoporous alumina by direct cooling the barrier layer
during the aluminum hard anodization”, Materials
Chemistry and Physics, Vol.135, pp.1089-1095, 2012.
44.X. Zhou, G.E. Thompson, P. Skeldon, G.C. Wood, K. Shimizu
and H. Habazaki, Corrosion Sci. 41(1999)1599.
45.Y. Liu, P. Skeldon, G.E. Thompson, H. Habazaki,Corros.
Sci. 44(2002)1133.
46.H. Habazaki, X. Zhou, K. Shimizu, P. Skeldon, G.E.
Thompson and G. C. Wood, Electrochim. Acta 42(17)
(1997)2627.
47.A.K. Mukhopadhyay and A.K. Sharma, Surf. Coat. Technol.
92(1997)212.
48.L.E. Fratila-Apachitei, F.D. Tichelaar, G.E. Thompson, H.
Terryn, P. Skeldon, J. Duszczyk and L. Katgerman,
Electrochim. Acta 49(2004)3169.
49.Y.S. Huang, T.S. Shih and C.E. Wu, “Electrochemical
behavior of anodized AA6063-T6 alloys affected by matrix
structures”, Applied surface Science, Vol.264,
pp.410-418, 2013.
50.T.S. Shih, T.H. Lee and Y.J. Jhou, “The effect of
anodization treatment on the microstructure and fatigue
behavior of 7075-T73 aluminum alloy”, Materials
Transactions, Vol.55, pp.1280-1285, 2014.
51.廖庭瑋, 「深冷鍛造與陽極處理對鋁合金7075的疲勞性質及微結構
影響研究」, 國立中央大學, 碩士論文, 民國103年.
52.L. Iglesias-Rubianes, P. Skeldon, G.E. Thompson, U.
Kreissig, D. Grambole, H. Habazaki and K. Shimizu,
“Behaviour of hydrogen impurity in aluminum alloys during
anodizing”, Thin Solid Films, Vol.424, pp.201-207, 2003.
53.I.M. Robertson and H.K. Birnbaum, “Dislocation mobility
and hydrogen-A BRIEF REVIEW”
54.P.J. Ferreira, I.M. Robertson and H.K. Birnbaum,
“Hydrogen effects on the character of dislocations in high
purity aluminum”, Acta Metallurgica, Vol.47,
pp.2991-2998, 1999.
55.F.J. Humphreys and M. Hatherly, “Recrystallization and
Related annealing phenomena”, pp.131, 1995.
56.B. Lonyuk, I. Apachitei and J. Duszczyk, “The effect of
oxide coatings on fatigue properties of 7475-T6 aluminum
alloy”, Surface & Coatings Technology, Vol.201, Issue.21,
pp.8688-8694, 2007.
57.M. Hajihashemi, N. Yazdian, M. Ajabshiri and M.A.
Asadabad, “The effect of chromium and anodizing coating
on fatigue characteristics of 7075-T6 Al alloys used in
aerospace industries”, Journal of Materials Science and
Engineering with Advanced Technology, Vol. 12, pp.39-47,
2015.
58.A. Janghorban, A. Antoni-Zdziobek, M. Lomello-Tafin, C.
Antion, Th. Mazingue amd A. Pisch, “Phase equilibria in
the aluminium-rich side of Al-Zr system”, Journal of
Thermal Analysis and Calorimetry, Vol.114, pp.1015-1020,
2013.
59.魏千竣, 「鑄/鍛鋁合金的微結構對機械性質的影響」, 國立中央
大學, 碩士論文, 民國105年.
60.L. Hong, Z. Gang, L.C. Ming and Z. Liang, “Effect of
magnesium content on phase constituents of Al-Mg-Si-Cu
alloys”, Transactions of Nonferrous Metals Society of
China, Vol.16, pp.376-381, 2006.
61.M. Yildirm and D. Ozyurek, “The effect of Mg amount on
the microstructure and mechanical properties of Al-Si-Mg
alloys”, Materials and Design, Vol.51, pp.767-774, 2013.
62.L.P. Troeger and E.A. Starke Jr, “Particle-stimulated
nucleation of recrystallization for grain-size control and
super-plasticity in an Al-Mg-Si-Cu alloy”, Materials
Science and Engineering A, Vol.293, pp.19-29, 2000.
63.G. Mrowka-Nowotnik, “Intermetallic phases examination in
cast AlSi5Cu1Mg and AlCu4Ni2Mg2 aluminium alloys in as-
cast and T6 condition”, Recent Trends in Processing and
Degradation of Aluminium Alloys, pp.20-40, 2011.
64.H.J. Kim, J.Y. Lee, K.W. Pail, K.W. Koh, J. Won, S. Choe,
J. Lee, J.T. Moon and Y.J. Park, “Effect of Cu/Al
intermetallic compound (IMC) on copper wire and aluminum
pad bondability”, IEEE Transactions on Components and
Packaging Technologies, Vol.26, pp.367-374, 2003.
65.R.P. Wei, C.M. Liao and M. Gao, Metall. Mater. Trans. A
29A (1998) 1153.
66.M.K. Cavanaugh, R.G. Buchheit and N. Birbilism Eng. Fract.
Mech., 76, 641 2009.
67.N. Birbilis and R.G. Buchheit, “Electrochemical
characteristics of intermetallic phase in aluminum alloys
an experimental survey and discussion, Journal of The
Electrochemical Society, Vol.152, B140-B151, 2005.
68.A.C. Vieira, A.M. Pinto, L.A. Rocha and S. Mischler,
“Effect of Al2Cu precipitates size and mass transport on
the polarization behavior of age-hardened Al-Si-Cu-Mg
alloys in 0.05M NaCl, Electrochimica Acta, Vol.56,
pp.3821-3828, 2001.
指導教授 施登士(Teng-Shih Shih) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明