博碩士論文 104323107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.189.178.37
姓名 粘凱智(NIAN,KAI-ZHI)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波振動輔助鋁合金A6061拉伸試驗之研究
相關論文
★ 中尺寸LED背光模組之實驗研究★ 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
★ 以反應曲面法進行行動電話卡勾之最佳化設計★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為
★ A1070在累進式背擠製下的機械性質與微結構之研究★ 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製
★ 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計
★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究★ 旋轉鍛造螺旋齒輪製程分析
★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析★ 以有限元素法與反應曲面法分析增量式板金成形
★ 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計★ 以有限元素法與反應曲面法分析兩點增量成形
★ 引伸成形加工問題之有限元素分析★ 應用流函數法分析軸對稱熱擠製加工問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文旨在觀察超音波振動輔助拉伸試驗之材料行為,探討超音波軟化效應的機制。本文首先建立超音波振動輔助材料軸向加載試驗系統,並探討不同拉伸速率、不同超音波加載時機以及不同超音波振幅對拉伸試驗之影響。研究結果顯示,本文之超音波系統具有材料軟化之效果,超音波加載於試片時,試片的塑流應力會隨之下降,其下降幅度與加載之超音波振幅成正比例關係;此外,透過實驗可以觀察出明顯的應力疊加現象,故其為超音波主要作用機制之一。
摘要(英) The objective of this paper is to observe the material behavior of specimens under ultrasonic vibration assisted tensile test and to explore the mechanism of acoustic softening effect. In this paper, an experimental tensile test system was designed and made, and the influence of different stroke speed, different ultra-sonic vibration applied timing and different ultrasonic vibration amplitude on tensile test was discussed. The results show that the ultrasonic vibration assisted tensile test system of this paper has effect on material softening. Flow stress of the specimens reduced when the ultrasonic vibrations were applied, and the amounts of flow stress reduction is proportional to the amplitude of the ultrasonic vibrations. Moreover, the obvious phenomenon of stress superposition was observed in this paper, so stress superposition is considered to be one of the main mechanism of stress reduction.
關鍵字(中) ★ 超音波
★ 超音波振動
★ 鋁合金
★ 拉伸試驗
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 2
1.3 文獻回顧 3
第二章 基本理論 11
2.1 體積效應 11
2.2 表面效應 14
第三章 實驗設備與方法 23
3.1 實驗設備 23
3.1.1 材料試驗系統 23
3.1.2 應變擷取系統 23
3.1.3 應變規 24
3.1.4 超音波振動輔助拉伸系統 24
3.2 實驗方法 28
3.2.1 試片製作 28
3.2.2 實驗步驟 29
3.2.3 實驗條件 30
第四章 實驗結果與討論 48
4.1 拉伸速率對拉伸試驗之影響 48
4.2 加載時機對拉伸試驗之影響 50
4.3 超音波振幅對拉伸試驗之影響 50
4.4 超音波振動輔助拉伸之現象 51
4.4.1 衝擊效應 51
4.4.2 應力疊加作用 52
第五章 結論與建議 66
5.1 結論 66
5.2 建議 67
參考文獻 68
參考文獻
[1]F. Blaha and B. Langenecker, “Tensile deformation of zinc crystal under ultrasonic vibration”, Naturwissenschaften, Vol 42, pp. 556, 1955.
[2]B. Langenecker, “Effects of ultrasound on deformation characteristics of metals”, IEEE Transactions on Sonics and Ultrasonics, Vol 13, pp. 1-8, 1966.
[3]W. Kempe and E. Kroner, “Dislocation damping of aluminum single crystals at room temperature”, Zeitschrift für Metallkunde, Vol 47, pp. 302-304, 1956.
[4]G. E. Nevill and F. R. Brotzen, “The effect of vibration on the static yield strength of low-carbon steel”, Proc. Am. Soc. Testing Materials, Vol 57, pp. 751-755, 1957.
[5]D. R. Culp and H. T. Gencsoy, “Metal deformation with ultrasound”, IEEE Ultrasonics Symposium, pp. 195-198, 1973.
[6]A. Pasierb and A. Wojnar, “An experimental investigation of deep drawing and drawing processes of thin walled products with utilization of ultrasonic vibration”, Journal of Materials Processing Technology, Vol. 34, pp. 489-494, 1992.
[7]J. Tsujina, T. Ueoka, H. Sato and K. Takiguchi, “Characteristics of ultrasonic bending of metal plates using a longitudinal vibration die and punch”, IEEE Ultrasonic Symposium, pp. 863-866, 1992.
[8]何勍和聞邦椿,「振動塑性加工的進展及若干問題」,遼寧工學院學報,19(4), 5-9頁,1999。
[9]H. O. K. Kirchner, W. K. Kromp, F. B. Prinz and P. Trimmel, “Plastic deformation under simultaneous cyclic and unidirectional loading at low and ultrasonic frequencies”, Materials science and engineering, Vol 68(2), pp. 197-206, 1985.
[10]W. Littmann, H. Storck and J. Wallaschek, “Sliding friction in the presence of ultrasonic oscillations: superposition of longitudinal oscillation”, Archive of Applied Mechanics, Vol 71, pp. 549-554, 2001.
[11]M. Murakawa and M. Jin, “The utility of radially and ultrasonically vibrated dies in the wire drawing process”, Journal of Material Technology, Vol 113, pp. 81-86, 2001.
[12]J. C. Hung and Y. C. Tsai, “Frictional effect of ultrasonic-vibration on upsetting”, Ultrasonics, Vol 43, pp. 277-284, 2007.
[13]S. A. A. Akbari Mousavi, H. Feizi and R. Madoliat, “Investigations on the effects of ultrasonic vibrations in the extrusion process”, Journal of Material Technology, Vol. 187, pp. 657-661, 2007.
[14]Y. Ashida and H. Aoyama, “Press forming using ultrasonic vibration”, Journal of Material Technology, Vol 187, pp. 118-122, 2007.
[15]W. Ting, W. Dongpo, L. Gang, G. Baoming and S. Ningxia, “Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing”, Applied Surface Science, Vol 255, pp. 1824-1829, 2008.
[16]C. Bunget and G. Ngaile, “Influence of ultrasonic vibration on micro-extrusion”, Ultrasonics, Vol 51, pp. 606-616, 2011.
[17]Tong Wen, Li Wei, Xia Chen and Chun-lei Pei, “Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process”, International Journal of Minerals, Metallurgy, and Materials, Vol 18(1), pp. 70-76, 2011.
[18]Y. Liu, S. Suslov, Q. Han, C. Xu and L. Hua, “Microstructure of the pure copper produced by upsetting with ultrasonic vibration”, Materials Letters, Vol 67, pp. 52-55, 2012.
[19]Z. Yao, G. Y. Kim, L. Faidley, Q. Zou, D. Mei and Z. Chen, “Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting”, Journal of Materials Processing Technology, Vol 212, pp. 640-646, 2012.
[20]Z. Yao, G. Y. Kim, Z. Wang, L. Faidley, Q. Zou, D. Mei and Z. Chen, “Acoustic softening and residual hardening in aluminum: Modeling and experiments”, International Journal of Plasticity, Vol 39, pp. 75-87, 2012.
[21]R. K. Dutta, R. H. Petrov, R. Delhez, M. J. M. Hermans, I. M. Richardson and A. J. Böttge, “The effect of tensile deformation by in situ ultrasonic treatment on the microstructure of low-carbon steel”, Acta Materialia, Vol 61(5), pp. 1592-1602, 2013.
[22]F. Djavanroodi, H. Ahmadian, K. Koohkan and R. Naseri, “Ultrasonic assisted-ECAP”, Ultrasonics, Vol 53, pp. 1089-1096, 2013.
[23]G. Faraji, M. Ebrahimi and A. R. Bskrca, “Ultrasonic assisted tubular channel angular pressing process”, Material Science & Engineering: A, Vol 599, pp. 10-15, 2014.
[24]S. Bagherzadeh and K. Abrinia, “Effect of Ultrasonic Vibration on Compression Behavior and Microstructural Characteristics of Commercially Pure Aluminum”, Journal of Materials Engineering & Performance, Vol 24(11), 2015.
[25]X. C. Zhuang, J. P. Wang, H. Zheng and Z. H. A. O. Zhen, “Forming mechanism of ultrasonic vibration assisted compression”, Transactions of Nonferrous Metals Society of China, Vol 25(7), pp. 2352-2360, 2015.
[26]F. Ahmadi, M. Farzin and M. Mandegari, “Effect of grain size on ultrasonic softening of pure aluminum”, Ultrasonics, Vol 63, pp. 111-117, 2015.
[27]V. Fartashvand, A. Abdullah and S. A. Sadough Vanini, “Investigation of Ti-6Al-4V alloy acoustic softening”, Ultrasonics sonochemistry, Vol 38, pp. 744-749, 2017.
[28]A. H. Cottrell and D. L. Dexter, “Dislocations and plastic flow in crystals”, American Journal of Physics, Vol 22(4), pp. 242-243, 1954.
[29]K. Siegert and A. Möck, “Wire drawing with ultrasonically oscillating dies”, Journal of Materials Processing Technology, Vol 60(1), pp. 657-660, 1996.
[30]J. C. Hung, “Frictional Effect on ultrasonic-vibration forming of aluminum alloy”, STEEL RESEARCH INTERNATIONAL, pp. 1023-1026, 2012.
[31]N. T. Rudkins, P. Hartley, I. Pillinger and D. Petty, “Friction modelling and experimental observations in hot ring compression tests”, Journal of Materials Processing Technology, Vol 60(1-4), pp.349-353, 1996.
[32]陳昱樺,「超音波振動輔助等通道彎角擠製之研究」,國立中央大學,碩士論文,民國102年。
[33]K. H. W. Seah, Y. S. Wong and L. C. Lee, “Design of tool holders for ultrasonic machining using FEM”, Journal of Materials Processing, Vol 37(1-4), pp. 801-816, 1993.
[34]島川正憲,超音波工學理論實務,復漢出版社出版,1993年1月。
[35]“B557M−14 Standard Test Methods for Tension Testing Wrought and Cast Aluminum and Magnesium-Alloy Products”, Annual Book of ASTM Standard.
[36]Y. Daud, M. Lucas and Z. Huang, “Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium”, Journal of Materials Processing Technology, Vol 186(1), pp. 179-190, 2007.
[37]H. O. K. Kirchner, W. K. Kromp, F. B. Prinz and P. Trimmel, “Plastic deformation under simultaneous and unidirectional loading at low and ultrasonic frequencies”, Materials science and engineering, Vol 68(2), pp. 197–206, 1985.
指導教授 葉維磬 審核日期 2017-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明