博碩士論文 103323101 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.116.37.48
姓名 陳彥廷(Yen-Ting Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雙電解槽電解水產氫於多電極組下之效能研究
(Parameter analysis of hydrogen production by Multi-electrode dual cell water electrolysis)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 能源議題是21世紀人類面臨的一項重大挑戰,各國紛紛以開發可再生能源作為其主要目標,因此如何有效地儲存間歇性能源,「氫」在當中即扮演重要角色,「氫能經濟」也被視為安全且可持續性的能源解決方案。
本研究採用電解水方式產氫,以質子交換膜分隔陰、陽兩極,雙液電解槽的實驗設計,降低電解水的分解電壓,並且使用工業廢液H_2 ?SO?_4、KOH作為電解液,能夠同時解決化學品過剩的問題。透過電解液濃度、施加電壓、電極間距、並聯電極組數等參數設計,探討各參數對於產氫能源效率的影響,再將最佳參數組合與業界相比較,以發揮本研究之商用價值。
實驗結果顯示,提高電解液濃度,電解水反應的實際電解電壓隨之下降,其中又以40wt%濃度效果最佳,其實際電解電壓為0.7V。在能源效率方面,於低施加電壓條件下,多電極的裝置降低了整體電阻,擁有較高的能源效率,其中在30wt%濃度、施加電壓2V、並聯三組電極、電極間距6mm最佳參數條件下,效率為96.74%,此結果與業界相比,具備足夠的競爭力。
關鍵字:水電解、多電極、質子交換膜
摘要(英)
The issue of energy is a major challenge for mankind in the 21st century, and countries have to develop renewable energies as their main energy resources. Among energy resources, hydrogen is considered to be one of most promising energy carriers. How to effectively produce and store,” hydrogen” plays an important role in ”hydrogen economy”.
  In this study, water electrolysis is used to produce hydrogen.Two cells, filled with acid and alkaline electrolytes , are separated by proton exchange membrane. The advantage of acido-alkaline electrochemical cell is to reduce the decomposition voltage of water electrolysis. Furthermore, industrial waste liquids, such as sulfuric acid and potassium hydroxide, can be used as electrolytes, and problem of excess chemicals can thus be reduced. In this thesis,the influence of working parameters, such as electrolyte concentration, applied voltage, inter-electrode distance and the number of electrode groups, on the energy efficiency of hydrogen production was discussed
  Experimental results show that the decomposition voltage decreases with the increase of electrolyte concentration, especially the decomposition voltage is reduced to 0.7V at concentration of 40wt%. For energy efficiency, the device with multiple electrodes reduces the resistance and has a higher energy efficiency under low applied voltage.A efficiency of 96.74% is presented under the conditions of electrolyte concentration 30wt%,applied voltage 2V, 3 electrode groups in parallel,and inter-electrode distance 6mm. It shows that this acido-alkaline electrochemical cell is highly competitive and can be applied in many commercial applications.
Key words: Water electrolysis;Proton exchange membrane(PEM);Multi-electrode
關鍵字(中) ★ 水電解
★ 多電極
★ 質子交換膜
關鍵字(英)
論文目次
摘要 I
ABSTRACT II
目錄 IV
表目錄 VIII
圖目錄 IX
符號說明 XII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-2-1 水電解歷史發展 3
1-2-2 電解槽的分類 4
1-3 研究目的與動機 6
第二章 理論基礎 8
2-1 電解水產氫之基本原理 8
2-2 分解電壓 9
2-3 實際電解電位 10
2-4 法拉第電解定律 11
2-5 極化作用 11
2-5-1 濃度極化 11
2-5-2 活性極化 12
2-5-3 歐姆極化 13
2-6 離子輸送數 13
2-7 離子交換膜 14
2-8 導電度 16
2-9 燃料熱值 16
2-10 效率 17
2-11 電流 17
2-12 產氫量 17
2-13 多電極並聯 17
2-14 氫氣熱值 18
2-15 電功率 18
2-16 能源效率 18
2-17 能源效率影響因子 19
第三章 實驗裝置 21
3-1 實驗用品 21
3-1-1 實驗藥品 21
3-1-2 實驗材料 21
3-2 實驗儀器 23
3-2-1 直流電源供應器 23
3-2-2 溫度量測器 23
3-2-3 磁石攪拌器 23
3-2-4 氣體質量流量計 24
3-2-5 質子交換膜 24
3-3 實驗架設 24
3-4 實驗變數 25
3-5 實驗步驟 25
3-5-1 實際電解電位的量測 25
3-5-2 產氫量之量測 27
第四章 結果與討論28
4-1 電解液濃度對實際電解電位之影響 28
4-2 不同電解參數對產氫之影響 30
4-2-1 不同施加電壓對產氫之影響 31
4-2-2 不同電極間距對產氫之影響 32
4-2-3 不同電極組數對產氫之影響 34
4-3 雙槽電解水產氫之可行性驗證 37
第五章 結論與未來展望 40
5-1 結論 40
5-2 未來展望 41
參考文獻 42
表 48
圖 52
參考文獻
1. I. E. Agency,“Key world energy statistics,”International Energy Agency (2013).

2. J. O. M. Bockris, B. E. Conway, and E. Yeager, Comprehensive treatise of electrochemistry, Springer, Berlin (1982).

3. J. A. Turner,“A realizable renewable energy future,”Science, Vol. 285, pp. 687-689 (1999).

4. F. Mueller-Langer, E. Tzimas, M. Kaltschmitt, and S. Peteves,“Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term,”International Journal of Hydrogen Energy, Vol. 32, pp. 3797-3810 (2007)

5. I. Dincer,“Green methods for hydrogen production,” International journal of hydrogen energy, Vol. 37, pp. 1954-1971 (2012).

6. I. Dincer, and C. Acar,“Review and evaluation of hydrogen production methods for better sustainability,”International journal of hydrogen energy, Vol. 40, pp. 11094-11111 (2015).

7. P. Hollmuller, J. M. Joubert, B. Lachal, and K. Yvon,“Evaluation of a 5 kW p photovoltaic hydrogen production and storage installation for a residential home in Switzerland,”International Journal of Hydrogen Energy, Vol. 25, pp. 97-109 (2000).

8. D. C. Young, G. A. Mill, and R. Wall,“Feasibility of renewable energy storage using hydrogen in remote communities in Bhutan,”International journal of hydrogen energy, Vol. 32, pp. 997-1009 (2007).


9. J. O. M. Bockris, and T. N. Veziroglu,“Estimates of the price of hydrogen as a medium for wind and solar sources,”International journal of hydrogen energy, Vol. 32, pp. 1605-1610 (2007).

10. L. Degiorgis, M. Santarelli, and M. Cali,“Hydrogen from renewable energy: a pilot plant for thermal production and mobility,”Journal of Power Sources, Vol. 171, pp. 237-246 (2007).

11. K. Zeng, and D. Zhang,“Recent progress in alkaline water electrolysis for hydrogen production and applications,”Progress in Energy and Combustion Science, Vol. 36, pp. 307-326 (2010).

12. W. Kreuter, and H. Hofmann,“Electrolysis: the important energy transformer in a world of sustainable energy,”International Journal of Hydrogen Energy, Vol. 23, pp. 661-666 (1998).

13. P. H. Rieger,“Electrochemistry,”New Jersey, a SearchaPubMed a, pp. 343 (1987).

14. R. L. LeRoy,“Industrial water electrolysis: present and future,” International Journal of Hydrogen Energy, Vol. 8, pp. 401-417 (1983).

15. C. T. Bowen, H. J. Davis, B. F. Henshaw, R. Lachance, R. L. LeRoy, and R. Renaud,“Developments in advanced alkaline water electrolysis,”International journal of hydrogen energy, Vol. 9, pp. 59-66 (1984).

16. V. M. Rosa, M. B. F. Santos, and E. P. Da Silva,“New materials for water electrolysis diaphragms,”International Journal of Hydrogen Energy, Vol. 20, pp. 697-700 (1995).




17. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath,“Alternative polymer systems for proton exchange membranes (PEMs),”Chemical reviews, Vol. 104, pp. 4587-4612 (2004).

18. H. Wendt, and G. Kreysa, Electrochemical engineering: science and technology in chemical and other industries, Springer Science & Business Media, Berlin (1999).

19. D. Pletcher, and F. C. Walsh, Industrial electrochemistry, Springer Science & Business Media, Berlin (2012).

20. C. Koroneos, A. Dompros, G. Roumbas, and N. Moussiopoulos,“Life cycle assessment of hydrogen fuel production processes,”International Journal of Hydrogen Energy, Vol. 29, pp. 1443-1450 (2004).

21. R. Bhandari, C. A. Trudewind, and P. Zapp,“Life cycle assessment of hydrogen production via electrolysis–a review,” Journal of cleaner production, Vol. 85, pp. 151-163 (2014).

22. J. Angloher, and T. H. Dreier,“Techniken und Systeme zur Wasserstoffbereitstellung–Perspektiven einer Wasserstoff-Energiewirtschaft (Teil 1),”Coordination Centre Hydrogen-Initiative Bayern (Koordinationsstelle Wasserstoff-Initiative Bayern wiba); Chair for Energy Economy and Application Technology, TU Munchen (ed.); Munchen, December 1999 (2000).

23. J. Ivy,“Summary of electrolytic hydrogen production: milestone completion report,”National Renewable Energy Lab, Golden, CO (US) (2004).




24. H. Vandenborre, R. Leysen, J. P. Tollenboom, and L. H. Baetsle,“Alkaline inorganic-membrane-electolyte water electrolysis,” Seminar on Hydrogen as an Energy Vector: Its Production, Use and Transportation, 1 st, Brussels, Belgium (1978).

25. P. H. Vermeiren, W. Adriansens, J. P. Moreels, and R. Leysen,“Evaluation of the ZirfonR separator for use in alkaline water electrolysis and Ni-H2 batteries,”International Journal of Hydrogen Energy, Vol. 23, pp. 321-324 (1998).

26. M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten,“A comprehensive review on PEM water electrolysis,”International journal of hydrogen energy, Vol. 38, pp. 4901-4934 (2013).

27. A. Ursua, L. M. Gandia, and P. Sanchis,“Hydrogen production from water electrolysis: current status and future trends,” Proceedings of the IEEE, Vol. 100, pp. 410-426 (2012).

28. S. A. Grigoriev, V. I. Porembsky, and V. N. Fateev,“Pure hydrogen production by PEM electrolysis for hydrogen energy,” International Journal of Hydrogen Energy, Vol. 31, pp. 171-175 (2006).

29. A. Nechache, M. Cassir, and A. Ringuede,“Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: a review,”Journal of Power Sources, Vol. 258, pp. 164-181 (2014).

30. A. Brisse, J. Schefold, and M. Zahid,“High temperature water electrolysis in solid oxide cells,”International journal of hydrogen energy, Vol. 33, pp. 5375-5382 (2008).

31. J. Sigurvinsson, C. Mansilla, P. Lovera, and F. Werkoff,“Can high temperature steam electrolysis function with geothermal heat?”International Journal of Hydrogen Energy, Vol. 32, pp. 1174-1182 (2007).
32. T. Smolinka, M. Gunther, and J. Garche,“Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien,”Kurzfassung des Abschlussberichtes NOW-Studie, Freiburg im Breisgau, (2011).

33. M. Maack,“Generation of the energy carrier hydrogen–in context with electricity buffering generation through fuel cells,” Publicerad inom New Energy Externalities Developments for Sustainability (NEEDS), (2008).

34. T. F. O′Brien, T. V. Bommaraju, and F. Hine, Handbook of Chlor-Alkali Technology, Vol. 1, Fundamentals, Vol. 2, Brine Treatment and Cell Operation, Vol. 3, Facility Design and Product Handling, Vol. 4, Operations, VoL. 5, Corrosion,Environmental Issues,and Future Developments, Vol. 1, Springer Science & Business Media, Berlin (2007).

35. A. R. Zeradjanin, A. A. Topalov, S. Cherevko, and G.P. Keeley,“Sustainable generation of hydrogen using chemicals with regional oversupply–Feasibility of the electrolysis in acido-alkaline reactor,”International Journal of Hydrogen Energy, Vol. 39, pp. 16275-16281 (2014).

36. 田福助, 電化學基本原理與應用, 五洲出版社, 台北 (2004).

37. P. Millet, F. Andolfatto, and R. Durand,“Design and performance of a solid polymer electrolyte water electrolyzer,”International Journal of Hydrogen Energy, Vol. 21, pp. 87-93 (1996).

38. S. P. S. Badwal, S. Giddey, and F. T. Ciacchi,“Hydrogen and oxygen generation with polymer electrolyte membrane (PEM)-based electrolytic technology,”Ionics, Vol. 12, pp. 7-14 (2006).



39. Y. Petrov, J. Schosger, Z. Stoynov, and F. de Bruijn,“Hydrogen evolution on nickel electrode in synthetic tap water–alkaline solution,”International journal of hydrogen energy, Vol. 36, pp. 12715-12724 (2011).

40. J. Udagawa, P. Aguiar, and N. P. Brandon,“Hydrogen production through steam electrolysis: Model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell,”Journal of Power Sources, Vol. 166, pp. 127-136 (2007).

41. D. L. Stoji?, M. P. Mar?eta, S. P. Sovilj, and ?. S. Miljani?, “Hydrogen generation from water electrolysis—possibilities of energy saving,”Journal of Power Sources, Vol. 118, pp. 315-319 (2003).

42. N. Nagai, M. Takeuchi, T. Kimura, and T. Oka,“Existence of optimum space between electrodes on hydrogen production by water electrolysis,”International journal of hydrogen energy, Vol. 28, pp. 35-41 (2003).

43. J. M. Gras, and P. Spiteri,“Corrosion of stainless steels and nickel-based alloys for alkaline water electrolysis,”International journal of hydrogen energy, Vol. 18, pp. 561-566 (1993).

44. S. K. Mazloomi and N. Sulaiman,“Influencing factors of water electrolysis electrical efficiency,”Renewable and Sustainable Energy Reviews, Vol. 16, pp. 4257-4263 (2012).

45. 許嘉顯 (2015). 磁場對多電極電解水產氫之影響. 中央大學能源工程研究所學位論文, 未出版, 桃園.
指導教授 洪勵吾 審核日期 2017-9-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明