博碩士論文 104326023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.133.136.25
姓名 郭俊鑫(Chun-Hsin Kuo)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 有害事業廢棄物焚化爐之戴奧辛及多氯聯苯排放特性研究
(Characterization of PCDD/Fs and dl-PCBs Emissions from a Hazardous Waste Incinerator)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對北部某一有害事業廢棄物焚化廠進行煙道氣三點同步及四種固體物採樣,焚化對象分別為醫療廢棄物及含PCB絕緣油,探討各空氣污染防制設備對戴奧辛類化合物之去除效率。煙道氣分別於超音波溼式洗滌塔出口、袋式集塵器入口及煙囪排氣;固體物則分為底渣、污泥、熱交換器灰及袋式集塵灰進行同步採樣。分析結果顯示焚化醫療廢棄物時PCDD/Fs及dl-PCBs排放總濃度高達6.30 ng WHO-TEQ/Nm3,推測是因整體燃燒效率較差及廢氣通過防制設備時有明顯之de novo反應生成所致;焚化含PCB絕緣油時PCDD/Fs及dl-PCBs排放總濃度則為0.48 ng WHO-TEQ/Nm3,原因推測有三,一為液態廢棄物性質均勻且燃燒穩定,二為爐體燃燒狀態穩定,三為煙道氣之氯化氫濃度低,氯化潛勢相對較低,故排放濃度比焚化醫療廢棄物時為低。煙道氣三點濃度以袋式集塵器入口最高,推測廢氣流經熱交換器發生de novo反應且管道內累積大量含鐵鏽粉塵所致。煙道氣毒性當量物種分布方面,不論是焚化醫療廢棄物或是含PCB絕緣油,PCDD/Fs皆以1,2,3,7,8-PeCDD、2,3,4,7,8-PeCDF及2,3,4,6,7,8-HxCDF為優勢物種;dl-PCBs則以PeCB-126為優勢物種,主要原因為這些物種之TEF係數較高所致。就固體物而言,袋式集塵灰及污泥具有較高的PCDD/Fs及dl-PCBs濃度,乃因袋式集塵器可有效去除粒狀物及超音波聚塵效應所致。就活性碳噴入+袋式集塵器對PCDD/Fs及dl-PCBs之去除效率而言,焚化醫療廢棄物時分別達65.4 %及67.1 %;焚化含PCB絕緣油時則為63.8 %及66.1 %。數據顯示氣固相去除效率皆偏低,固相濃度去除效率低是因袋式集塵器對粒狀物去除效率未達預期所致;氣相濃度去除效率低則是因活性碳噴注系統有架橋及堵塞影響所致。焚化醫療廢棄物之PCDD/Fs及dl-PCBs排放係數分別為63.3及3.71 μg WHO-TEQ/ton;焚化含PCB絕緣油之PCDD/Fs及dl-PCBs排放係數則分別為1.05及0.08 ng WHO-TEQ/L。分析結果顯示含PCB絕緣油之PCDD/Fs及dl-PCBs原始濃度分別為32.5 ng/g和1.47 μg/g,經焚化處理總PCDD/Fs破壞效率達99.92 %;總dl-PCBs破壞效率更高達99.9999 %,顯示焚化是處理含PCB絕緣油之有效手段。
摘要(英) In this study, PCDD/Fs and dl-PCBs emissions from burning medical waste and PCB-containing oil of a hazardous waste incinerator were characterized individually. Flue gas samples were simultaneously taken at three different points. The first was taken at the ultrasonic wet scrubber outlet. The second was in baghouse inlet and the last was in stack. Solid matter samples were divided into four kinds, including bottom ash, sludge, heat exchanger ash and baghouse ash. The results showed that the concentration of PCDD/Fs and dl-PCBs in combustion of medical waste was as high as 6.30 ng WHO-TEQ/Nm3 in stack, which was due to poor combustion efficiency and de novo reaction in APCDs. On the other hand, concentrations of PCDD/Fs and dl-PCBs was 0.48 ng WHO-TEQ/Nm3 from combusting PCB-containing oil, because combustion condition was stable and concentration of hydrogen chloride in flue gas was lower than that of incinerating medical waste. As a result, the concentrations of PCDD/Fs and dl-PCBs measured at the baghouse inlet was the highest due to significant de novo formation in heat exchanger and the accumulation of particles on the pipe. Major PCDD/Fs and dl-PCBs congeners contributing to TEQ in flue gas include1,2,3,7,8-PeCDD, 2,3,4,7,8-PeCDF, 2,3,4,6,7,8-HxCDF and PeCB-126, due to their high TEFs. As for the solid matter, baghouse ash and sludge were of high PCDD/F and dl-PCB concentrations, because baghouse removed most particles and ultrasonic machine gathered dust. The PCDD/Fs and dl-PCBs removal efficiencies achieved with activated carbon injection and baghouse were 65.4 % and 67.1 %, respectively when medical waste was incinerated. On the other hand, the removal efficiencies of PCDD/Fs and dl-PCBs were 63.8 % and 66.1%, respectively when PCB-containing oil was incinerated. It was found that removal efficiencies of PCDD/Fs and dl-PCBs in both gas and solid phases were relatively low due to relatively low particle removal efficiencies achieved with baghouse and the inappropriate operating condition of activated carbon injection system. The emission factors of PCDD/Fs and dl-PCBs for incinerating medical waste were 63.3 and 3.71 μg WHO-TEQ/ton while 1.05 and 0.08 ng WHO-TEQ/L were recorded, respectively, for the incineration of PCB-containing oil. Original PCDD/Fs and dl-PCBs concentrations in PCB-containing oil were also measured and the results indicated that PCDD/Fs and dl-PCBs concentration were 32.5 ng/g and 1.47 μg/g, respectively. Analysis of the mass balance for incinerating PCB-containing oil indicated that overall PCDD/Fs destruction efficiency reached 99.92% while 99.9999% destruction efficiency was achieved for dl-PCBs. The results demonstrated that incineration with good engineering practice is an effective approach for treating PCB-containing oil.
關鍵字(中) ★ 有害事業廢棄物焚化爐
★ 戴奧辛
★ 多氯聯苯
★ 醫療廢棄物
★ 含PCB絕緣油
關鍵字(英) ★ hazardous waste incinerator
★ PCDD/Fs
★ dl-PCBs
★ medical waste
★ PCB-containing oil
論文目次 摘要 I
Abstract III
目錄 III
圖目錄 IX
表目錄 XIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 戴奧辛及多氯聯苯簡介 3
2.1.1 戴奧辛及多氯聯苯之物化特性 7
2.1.2 戴奧辛及多氯聯苯之污染及毒性 11
2.2 戴奧辛及多氯聯苯生成機制 14
2.2.1 主要形成機制 14
2.2.2 氯化氫之影響 22
2.3 醫療廢棄物 24
2.3.1 醫療廢棄物定義與管制策略 24
2.3.2 醫療廢棄物產量及分類 28
2.4 焚化系統簡介 29
2.4.1 旋轉窯焚化爐 33
2.4.2 流體化床焚化爐 34
2.5 焚化系統之戴奧辛類化合物排放特性 40
2.5.1 大型廢棄物焚化廠排放特性 40
2.5.2 中小型廢棄物焚化廠排放特性 42
2.5.3 生物醫療廢棄物焚化爐排放特性 43
2.5.4 事業廢棄物焚化爐排放特性 45
2.5.5 焚化灰渣中戴奧辛及多氯聯苯 47
2.6 戴奧辛類化合物排放控制技術與處理方法 49
2.6.1 焚化廠之戴奧辛類化合物控制技術 49
2.6.2 多氯聯苯之處理技術 52
第三章 研究方法 56
3.1 研究方法與流程 56
3.2 採樣對象 57
3.3 煙道氣採樣方法 59
3.4 固體物採樣方法 59
3.5 實驗室設備、材料、藥品及溶劑 59
3.5.1 實驗設備 59
3.5.2 實驗材料 60
3.5.3 實驗藥品 61
3.5.4 實驗室溶劑 62
3.6 採樣之品保品管程序 64
3.7 戴奧辛與多氯聯苯前處理與分析方法 64
3.7.1 HRGC/HRMS 分析 65
3.8 其他檢測方法 66
3.8.1 HCl檢測方法 66
3.8.2 煙道氣體組成檢測方法 66
第四章 結果與討論 67
4.1 有害事業廢棄物焚化廠概述 67
4.1.1 有害事業廢棄物焚化廠之防制設備操作參數與介紹 67
4.1.2 焚化醫療廢棄物及含PCB絕緣油之採樣參數 69
4.2 焚化醫療廢棄物之PCDD/Fs濃度 71
4.2.1 煙道氣之PCDD/Fs濃度 71
4.2.2 煙道氣之PCDD/Fs物種分布 74
4.2.3 固體物之PCDD/Fs濃度與物種分布 76
4.3 焚化醫療廢棄物之dl-PCBs濃度 78
4.3.1 煙道氣之dl-PCBs濃度 78
4.3.2 煙道氣之dl-PCBs物種分布 80
4.3.3 固體物之dl-PCBs濃度及物種分布 81
4.4 焚化含PCB絕緣油之PCDD/Fs濃度 83
4.4.1 煙道氣之PCDD/Fs濃度 83
4.4.2 煙道氣之PCDD/Fs物種分布 85
4.4.3 固體物之PCDD/Fs濃度與物種分布 87
4.5 焚化含PCB絕緣油之dl-PCB濃度 88
4.5.1 煙道氣之dl-PCBs濃度 88
4.5.2 煙道氣之dl-PCBs物種分布 90
4.5.3 固體物之dl-PCBs濃度與物種分布 92
4.6 焚化PCB絕緣油及醫療廢棄物之其他探討 93
4.6.1 ACI+袋式集塵器之去除效率 93
4.6.2 PCDD/Fs及dl-PCBs粒狀物濃度比較 95
4.6.3 排放係數之比較 97
4.6.4 焚化含PCB絕緣油之總去除效率及流佈 98
第五章 結論與建議 102
5.1 結論 102
5.2 建議 103
參考文獻 105
參考文獻
Altarawneh, M., Dlugogorski, B. Z., Kennedy, E. M., Mackie, J. C. (2009). Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Progress in Energy and Combustion Science, 35(3), 245-274.
Alvim-Ferraz, M. C. M., Afonso, S. A. V. (2005). Incineration of healthcare wastes: management of atmospheric emissions through waste segregation. Waste Management, 25(6), 638-648.
AMAP. PCB in the Russian Federation: inventory and proposals for priority remedial actions. Executive summary. AMAP report 200082-7971-008-6; 2000. 3, 27 pp.
Ballschmiter, K., Zell, M. (1980). Analysis of polychlorinated biphenyls (PCB) by glass capillary gas chromatography. Fresenius′ Zeitschrift für analytische Chemie, 302(1), 20-31.
Breivik, K., Sweetman, A., Pacyna, J. M., Jones, K. C. (2007). Towards a global historical emission inventory for selected PCB congeners—a mass balance approach: 3. An update. Science of the Total Environment, 377(2), 296-307.
Buekens, A., Huang, H. (1998). Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxins/furans in municipal waste incineration. Journal of Hazardous Materials, 62, 1-33.
Buser, H.R., Rappe, C. (1979). Formation of polychlorinated dibenzofurans (PCDFs) from the pyrolysis of individual PCB isomers. Chemosphere, 3, 157-174.
Chang, M. B., Lin, J. J. (2001). Memory effect on the dioxin emissions from municipal waste incinerator in Taiwan. Chemosphere, 45(8), 1151-1157.
Chang, Y. M., Hung, C. Y., Chen, J. H., Chang, C. T., Chen, C. H. (2009). Minimum feeding rate of activated carbon to control dioxin emissions from a large-scale municipal solid waste incinerator. Journal of Hazardous Materials, 161(2), 1436-1443.
Chen, T., Li, X., Yan, Y, Jin, Y. (2009). Polychlorinated biphenyls emission from a medical waste incinerator in China. Journal of Hazardous Materials 172(2–3), 1339-1343.
Chen, T., Zhan, M. X., Lin, X. Q., Fu, J. Y., Lu, S. Y., Li, X,D. (2015). Distribution of PCDD/Fs in the fly ash and atmospheric air of two typical hazardous waste incinerators in eastern China. Environmental Science and Pollution Research 22(2), 1207-1214.
Cordle, F., Cornelissen, P., Jelinek, C. (1978). Human exposure to polychlorinated biphenyls and polybrominated biphenyls. Environmental Health Perspectives. 24, 157-74 .
Duan, F., Liu, J., Chyang, C. S., Hu, C. H., Tso, J. (2013). Combustion behavior and pollutant emission characteristics of RDF (refuse derived fuel) and sawdust in a vortexing fluidized bed combustor. Energy, 57, 421-426.
Dyke, P. H., Foan, C., Fiedler, H. (2003). PCB and PAH releases from power stations and waste incineration processes in the UK. Chemosphere, 50(4), 469-480.
Evans, C. S and Dellinger, B. (2005). Mechanisms of dioxin formation from the high-temperature oxidation of 2-chlorophenol. Environmental Science & Technology, 39, 122-127.
Falandysz, J., Taniyasu, S., Flisak, M., Świętojańska, A., Horii, Y., Hanari, N., Yamashita, N. (2004). Highly toxic chlorobiphenyl and by-side impurities content and composition of technical Chlorofen formulation. Journal of Environmental Science and Health, Part A, 39(11-12), 2773-2782.
Lemieux, P. M., Lee, C. W., Ryan, J. V., Lutes, C. C. (2001). Bench-scale studies on the simultaneous formation of PCBs and PCDD/Fs from combustion systems. Waste Management, 21(5), 419-425.
Gao, H., Ni, Y., Zhang, H., Zhao, L., Zhang, N., Zhang, X., Zhang, Q., Chen, J. (2009). Stack gas emissions of PCDD/Fs from hospital waste incinerators in China. Chemosphere, 77(5), 634-639.
Gordon, J. G., Zank, N., Brooks, K., Cofone, L., Rubin, H. (1979). Disposal of Hospital Wastes Containing Pathogenic Organisms (No. MTR-79W00098). Mitre corp mclean va metrek div.
Grabic, R., Pekarek, V., Ullrich, J., Punčochář, M., Fišerová, E., Karban, J., Šebestová, M. (2002). Effect of reaction time on PCDD and PCDF formation by de novo synthetic reactions under oxygen deficient and rich atmosphere. Chemosphere, 49(7), 691-696.
Gunes, G., Saral, A., Yildiz, S., Kuzu, S. L. (2015). Determination of optimum dose of adsorbent for PCDD/F removal in the flue gas of a medical waste incineration plant. Chemical Engineering Research and Design, 104, 695-702.
Ido, A., Ishihara, S., Kume, A., Nakanishi, T., Monguchi, Y., Sajiki, H., Nagase, H. (2013). Practical method for PCB degradation using Pd/C–H 2–Mg system. Chemosphere, 90(1), 57-64.
Ishihara, S., Ido, A., Monguchi, Y., Nagase, H., Sajiki, H. (2012). Pd/C-catalyzed dechlorination of polychlorinated biphenyls under hydrogen gas-free conditions. Journal of Hazardous Materials, 229, 15-19.
Islam, M. N., Park, J. H., Shin, M. S., Park, H. S. (2014). Decontamination of PCBs-containing soil using subcritical water extraction process. Chemosphere, 109, 28-33.
Jang, Y. C., Lee, C., Yoon, O. S., Kim, H. (2006). Medical waste management in Korea. Journal of Environmental Management, 80(2), 107-115.
Jansson, S., Lundin, L., Grabic, R. (2011). Characterisation and fingerprinting of PCBs in flue gas and ash from waste incineration and in technical mixtures. Chemosphere, 85(3), 509-515.
Jiang, K., Li, L., Chen, Y., Jin, J. (1997). Determination of PCDD/Fs and dioxin-like PCBs in Chinese commercial PCBs and emissions from a testing PCB incinerator. Chemosphere, 34(5), 941-950.
Ji, S. S., Ren, Y., Buenkens, A., Chen, T., Lu, S. Y., Cen K. F., Li, X. D. (2014). Treating PCDD/Fs by combined catalysis and activated carbon adsorption. Chemosphere, 102, 31-36.
Johnke, B., Menke, D., Böske, J. (2001). Neue Bewertung bei den Toxizitätsäquivalenten für Dioxine/Furane und für PCB durch die WHO. Umweltwissenschaften und Schadstoff-Forschung, 13(3), 175-180.
Ke, S., Jianhua, Y., Xiaodong, L., Shengyong, L., Yinglei, W., Muxing, F. (2010). Inhibition of de novo synthesis of PCDD/Fs by SO2 in a model system. Chemosphere, 78(10), 1230-1235.
Khachatryan, L., Asatryan, R., Dellinger, B. (2003). Development of expanded and core kinetic models for the gas phase formation of dioxins from chlorinated phenols. Chemosphere, 52(4), 695-708.
Khumsaeng, T., Oanh, N. T. K., Kare, K. H., Polprasert, C. (2013). Emission of dioxins/furans and other U-POPs from test burns of non-POP pesticides in a hazardous waste incinerator. Waste Management, 33(4), 833-841.
Kim, K. S., Hirai, Y., Kato, M., Urano, K., Masunaga, S. (2004). Detailed PCB congener patterns in incinerator flue gas and commercial PCB formulations (Kanechlor). Chemosphere, 55(4), 539-553.
Kim, K., Kim, K., Son, S. H., Cho, J., Kim, Y. C. (2011). Supercritical water oxidation of transformer oil contaminated with PCBs—A road to commercial plant from bench-scale facility. The Journal of Supercritical Fluids, 58(1), 121-130.
Kociba, R. J., Keeler, P. A., Park C. N., Gehrich, P. J. (1976). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD): results of a 13-week oral toxicity study in rats. Toxicology and Applied Pharmacology, 35, 53–74.
K. Srogi. (2008). Levels and congener distributions of PCDDs, PCDFs and dioxin-like PCBs in environmental and human samples: a review. Environmental Chemistry Letters, 6(1), 1-28.
Kulkarni, P. S., Crespo, J. G., Afonso, C. A. (2008). Dioxins sources and current remediation technologies—a review. Environment International, 34(1), 139-153.
Kume, A., Monguchi, Y., Hattori, K., Nagase, H., Sajiki, H. (2008). Pd/C-catalyzed practical degradation of PCBs at room temperature. Applied Catalysis B: Environmental, 81(3), 274-282.
Lemieux, P. M., Lee, C. W., Ryan, J. V., Lutes, C. C. (2001). Bench-scale studies on the simultaneous formation of PCBs and PCDD/Fs from combustion systems. Waste Management, 21(5), 419-425.
Letcher, R. J., Klasson-Wehler E., Bergman Å. (2000). Methyl sulphone and hydroxylated metabolites of polychlorinated biphenyls. In Paarsivirta J, ed. Handbook of environmental chemistry: anthropogenic compounds—new types of persistent halogenated compounds, vol. 3, part K. Heidelberg, Germany: Springer-Verlag, 315–359.
Lin, C. H., Teng, J, T., Chyang, C, S. (1997). Evaluation of the combustion efficiency and emission of pollutants by coal particles in a vortexing fluidized bed. Combustion and Flame, 110(1-2), 163-172.
Lin, L. F., Lee, W. J., Chang-Chien, G. P. (2006). Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from various industrial sources. Journal of the Air & Waste Management Association, 56(12), 1707-1715.
Liu, P. Y., Zheng, M. H., Zhang, B., Xu, X. B. (2001). Mechanism of PCBs formation from the pyrolysis of chlorobenzenes. Chemosphere, 43(4), 783-785.
Luthardt, P., Mayer, J., Fuchs, J. (2002). Total TEQ emissions (PCDD/F and PCB) from industrial sources. Chemosphere, 46(9), 1303-1308.
Manzano, M. A., Perales, J. A., Sales, D., Quiroga, J. M. (2004). Using solar and ultraviolet light to degrade PCBs in sand and transformer oils. Chemosphere, 57(7), 645-654.
Marulanda, V and Bolaños, G. (2010). Supercritical water oxidation of a heavily PCB-contaminated mineral transformer oil: Laboratory-scale data and economic assessment. The Journal of Supercritical Fluids, 54(2), 258-265.
McKay, G. (2002). Dioxin characterisation, formation and minimization during municipal solid waste (MSW) incineration: review, Chemical Engineering Journal, 86, 343-368.
Metso Power Oy. 2012. Internal leaflet. Different fluidized bed boiler technologies.
Mininni, G., Sbrilli, A., Braguglia, C. M., Guerriero, E., Marani, D., Rotatori, M. (2007). Dioxins, furans and polycyclic aromatic hydrocarbons emissions from a hospital and cemetery waste incinerator. Atmospheric Environment, 41(38), 8527-8536.
Nah, I. W., Hwang, K. Y., Shul, Y. G. (2008). Effect of metal and glycol on mechanochemical dechlorination of polychlorinated biphenyls (PCBs). Chemosphere, 73(1), 138-141.
Pekárek, V., Grabic, R., Marklund, S., Punčochář, M., Ullrich, J. (2001). Effects of oxygen on formation of PCB and PCDD/F on extracted fly ash in the presence of carbon and cupric salt. Chemosphere, 43(4), 777-782.
Pekarek, V., Punčochář, M., Bureš, M., Grabic, R., Fišerová, E. (2007). Effects of sulfur dioxide, hydrogen peroxide and sulfuric acid on the de novo synthesis of PCDD/F and PCB under model laboratory conditions. Chemosphere, 66(10), 1947-1954.
Qi, Z., Buekens, A., Liu, J., Chen, T., Lu, S., Li, X., Cen, K. (2014). Some technical issues in managing PCBs. Environmental Science and Pollution Research, 21(10), 6448-6462.
Quinete, N., Schettgen, T., Bertram, J., Kraus, T. (2014). Occurrence and distribution of PCB metabolites in blood and their potential health effects in humans: a review. Environmental Science and Pollution Research, 21(20), 11951-11972.
Rivera-Austrui, J., Borrajo, M. A., Martinez, K., Adrados, M. A., Abalos, M., Van Bavel, B., Rivera, J., Abad, E. (2011). Assessment of polychlorinated dibenzo-p-dioxin and dibenzofuran emissions from a hazardous waste incineration plant using long-term sampling equipment. Chemosphere, 82(9), 1343-1349.
Ryu, J. Y., Mulholland, J. A., Takeuchi, M., Kim, D. H., Hatanaka, T. (2005). CuCl2-catalyzed PCDD/F formation and congener patterns from phenols. Chemosphere, 61(9), 1312-1326.
Sato, T., Todoroki, T., Shimoda, K., Terada, A., Hosomi, M. (2010). Behavior of PCDDs/PCDFs in remediation of PCBs-contaminated sediments by thermal desorption. Chemosphere, 80, 184-189.
Schecter, A., Birnbaum, L., Ryan, J. J., Constable, J. D. (2006). Dioxins: an overview. Environmental Research 101, 419–428.
Schlosserová J. Kontrolle ausgewählter Böden in der Tschechischen und Slowakischen Republik auf ihre Kontamination mit chlorierten Kohlenwassertstoffen. (In German) In: Heinisch E, Kettrup A, Wenzel-Klein S, editors. Schadstoffatlas Osteuropa. Ecomed Verlagsgesellschaft AG & Co. Germany3-609-69540-4; 1994. p. 54-9.
Secretariat of the Basel Convention. Technical guidelines on the environmentally sound management of biomedical and healthcare wastes. Switzerland, 2003.
Shin, S. K., Kim, K. S., You, J. C., Song, B. J., Kim, J. G. (2006). Concentration and congener patterns of polychlorinated biphenyls in industrial and municipal waste incinerator flue gas, Korea. Journal of Hazardous Materials, 133(1), 53-59.
Simion, A. M., Miyata, H., Kakeda, M., Egashira, N., Mitoma, Y., Simion, C. (2013). Direct and complete cleansing of transformer oil contaminated by PCBs. Separation and Purification Technology, 103, 267-272.
Singh, S and Prakash, V. (2007). Toxic environmental releases from medical waste incineration: a review. Environmental Monitoring and Assessment, 132(1-3), 67-81.
Stanmore, B. R. (2004). The formation of dioxins in combustion systems. Combustion and flame. Combustion and Flame, 136, 398-427.
Takaoka, M., Liao, P., Takeda, N., Fujiwara, T., Oshita, K. (2003). The behavior of PCDD/Fs, PCBs, chlorobenzenes and chlorophenols in wet scrubbing system of municipal solid waste incinerator. Chemosphere, 53(2), 153-161.
Takaoka, M., Shiono, A., Nishimura, K., Yamamoto, T., Uruga, T., Takeda, N., Tanaka, T., Oshitaa, K., Matsumotoa, T., Harada, H. (2005). Dynamic change of copper in fly ash during de novo synthesis of dioxins. Environmental Science & Technology, 39, pp. 5878-5884.
Takaoka, M., Yamamoto, T., Shiono, A., Takeda, N., Oshita, K., Matsumoto, T., Tanaka, T. (2005). The effect of copper speciation on the formation of chlorinated aromatics on real municipal solid waste incinerator fly ash. Chemosphere, 59(10), 1497-1505.
Takaoka, M., Shiono, A., Yamamoto, T., Uruga, T., Takeda, N., Tanaka, T., Oshitaa, K., Matsumotoa, T., Harada, H. (2008). Relationship between dynamic change of copper and dioxin generation in various fly ash. Chemosphere, 73(1), S78-S83.
Tatsukawa, R. (1976). PCB pollution of the Japanese environment. PCB poisoning and pollution. Kodansha Ltd. Tokyo. Academic Press. ISBN 0-12-347850-2, 147-179.
Thacker, N., Sheikh, J., Tamane, S. M., Bhanarkar, A., Majumdar, D., Singh, K., Chavhan, C., Trivedi, J. (2013). Emissions of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (PCBs) to air from waste incinerators and high thermal processes in India. Environmental Monitoring and Assessment, 185(1), 425-429.
The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds.
Tsang, W and Babushok, V, I. (2003). Gas-phase mechanism for dioxin formation. Chemosphere, 51, 1023-1029.
Tuppurainen, K., Asikainan, A., Ruokojarvi, P. and Ruuakanen, J. (2003). Perspectives on the formation of polychlorinated dibenzo-p-dioxin and dibenzofurans during municipal solid waste incineration and other combustion processes. Accounts Chemical Research, 36, 652-658.
Van Caneghem, J., Block, C., Van Brecht, A., Wauters, G., Vandecasteele, C. (2010). Mass balance for POPs in hazardous and municipal solid waste incinerators. Chemosphere, 78(6), 701-708.
Van Caneghem, J., Block, C., Vermeulen, I., Van Brecht, A., Van Royen, P., Jaspers, M., Wauters, G., Vandecasteele, C., (2010). Mass balance for POPs in a real scale fluidised bed combustor co-incinerating automotive shredder residue. Journal of Hazardous Materials, 181, 827-835.
Van Caneghem, J., Block, C., Vandecasteele, C. (2014). Destruction and formation of dioxin-like PCBs in dedicated full scale waste incinerators. Chemosphere, 94, 42-47.
Vermeulen, I., Van Caneghem, J., Vandecasteele, C. (2014). Indication of PCDD/F formation through precursor condensation in a full-scale hazardous waste incinerator. Journal of Material Cycles and Waste Management, 16(1), 167-171.
Voogt, P. D. E and Brinkman, U. T. (1989). Production, properties and usage of polychlorinated biphenyls. Halogenated biphenyls, terphenyls, naphthalenes, dibenzodioxins and related products, Elsevier Science Publishers, 3-45.
Wang, L. C., Lee, W. J., Lee, W. S., Chang-Chien, G. P., Tsai, P. J. (2003). Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans. Science of the Total Environment, 302(1), 185-198.
Weber, R., Sakurai, T., Ueno, S, Nishino, J. (2002). Correlation of PCDD/PCDF and CO values in a MSW incinerator––indication of memory effects in the high temperature/cooling section. Chemosphere, 49(2), 127-134.
Weber, R., Yoshida, S., Miwa, K. (2002). PCB destruction in subcritical and supercritical water evaluation of PCDF formation and initial steps of degradation mechanisms. Environmental Science & Technology, 36(8), 1839-1844.
Weber, R. (2007). Relevance of PCDD/PCDF formation for the evaluation of POPs destruction technologies – Review on current status and assessment gaps. Chemosphere, 67, S109-S117.
Weidemann, E. (2014). Waste incineration residues: Persistent organic pollutants in flue gas and fly ash from waste incineration. Doctoral thesis.
Wey, M. Y., Liu, K. Y., Yu, W. J., Lin, C. L., Chang, F. Y. (2008). Influences of chlorine content on emission of HCl and organic compounds in waste incineration using fluidized beds. Waste Management, 28(2), 406-415.
Wikstrom, E., Ryan, S., Touati, A., Telfer, M., Dennis, T., Gullett B.K. (2003). Importance of chlorine speciation on de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environmental Science & Technology, 37, 1108-1113.
Wikstrom, E., Ryan, S., Touati, A., Telfer, M., Dennis, T., Gullett B. K. (2004). In situ soot deposit as a carbon source for polychlorinated dibenzo-p-dioxins and dibenzpofurrans”, Environmental Science & Technology, 38, pp. 2097-2101.
Wikstrom, E., Ryan, S., Touati, A., Telfer, M., Dennis, T., Gullett B. K. (2004). Key parameter for de novo formation of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environmental Science & Technology, 37, 1962-1970.
Yan, J. H., Z. Peng, S. Y. Lu, X. D. Li, M. J. Ni, K. F. Cen and H. F. Dai. (2007). Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration. Journal of Hazardous Materials, 147(1-2), 652-657.
Yan, M., Li, X. D., Lu, S. Y., Chen, T., Chi, Y., Yan, J. H. (2011). Persistent organic pollutant emissions from medical waste incinerators in China. Journal of Material Cycles and Waste Management, 13(3), 213-218.
Zhao, L., Hou, H., Shimoda, K., Terada, A., Hosomi, M. (2012). Formation pathways of polychlorinated dibenzofurans (PCDFs) in sediments contaminated with PCBs during the thermal desorption process. Chemophere, 88, 1369-1374.
Zułkowski, W. S., Korwel, K., Robertson, L W. (2003). Polychlorinatedbiphenyls production in Poland. Fresenius Environmental Bulletin, 12, 152-7.
日本環境省, 「ポリ塩化ビフェニル(PCB)廃棄物の適正な処理に向けて」,2012年。
日本環境省,「環境・循環型社会・生物多様性白書」,2014年。
石川龍一,「固形廃棄物処理市場の今後の技術動向」,エバラ時報,49-53,2012年。
足立彰、川野完司、西澤克志,「大阪 PCB 廃棄物処理施設の完成」,東芝レビュー,62(2),46-49,2007年。
河地良彦、浦野進司,「溶融還元熱分解法によるバルク状 PCB 汚染物等の無害化処理技術を確立」,三井造船技報,(192),39-44,2007年。
章裕民,「焚化處理技術」,文京圖書有限公司,台北,1993年。
黃秋華,「焚化系統及電弧爐煉鋼廠多氯聯苯排放特性之初步探討」,國立中央大學環境工程所,碩士論文,2004年。
楊萬發,「事業廢棄物焚化爐設計與選用手冊」,經濟部工業局,工業污染防治技術服務團,台北,1996年。
劉佳峰,「渦旋式流體化床焚化系統之概念設計」,中原大學化學工程研究所,碩士論文,2004年。
鄭志文,「流體化床燃煤鍋爐空氣污染物及二氧化碳排放特性研究」,國立中央大學環境工程所,碩士論文,2009年。
錢建嵩,「流體化床焚化爐與戴奧辛控制」,科學發展,450期,2010年6月。
環保署,「事業廢棄物焚化灰渣整合性管理計畫」,2005年。
環保署,「固定污染源毒性空氣污染物(戴奧辛及重金屬)排放調查及管制計畫」,中興工程,2009年。
環保署,「廢棄物(裝潢修繕、農業、醫療)管理策略檢討與推動專案工作計畫」,中興工程,2011年。
環保署,「生物醫療廢棄物管理策略」,2013。
環檢所,「排放管道中氯化氫檢測方法—硫氰化汞比色法(NIEA A412.73A)」,2008年。
環檢所,「排放管道中氣體組成檢測方法—奧賽德方法(NIEA A003.71C)」,2008年。
環檢所,「排放管道中戴奧辛及呋喃採樣方法(NIEA A807.75C)」,2010年。
環檢所,「戴奧辛類多氯聯苯檢測方法—氣相層析/高解析質譜法(NIEA M803.00B)」,2011年。
環檢所,「事業廢棄物採樣方法(NIEA R118.03B)」,2013年。
環檢所,「排放管道中戴奧辛及呋喃檢測方法(NIEA A808.75B)」,2013年。
環檢所,「戴奧辛及呋喃檢測方法—同位素標幟稀釋氣相層析/高解析質譜法 (NIEA M801.13B)」,2013年。
環檢所,「排放管道中粒狀汙染物採樣及其濃度之檢測方法(NIEA A101.75C) 」,2015年。
羅燦勳,「台灣地區含多氯聯苯電器設備管理策略之研究」,中原大學化學研究所,碩士論文,2007年。
指導教授 張木彬 審核日期 2017-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明