博碩士論文 104326019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.149.214.236
姓名 魏彤軒(Tong Syuan Wei)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 鈣鈦礦觸媒結合非熱電漿以儲存與還原NOx之可行性探討
(Storage and reduction of NOx via combining nonthermal plasma and perovskite-type catalyst)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Lean-burn 引擎具有較高之燃燒效率與低二氧化碳排放之優點,逐漸被廣泛應於重型柴油引擎及輕型柴油引擎。其排放氣體含有NOx及過多的氧氣,若沒有適當處置將會導致嚴重的NOx汙染。NOx被公認為重要的空氣汙染物,因為它會使環境及人體健康造成嚴重的影響。因此如何有效地還原NOx排放已經成為一個重要的議題。由於目前汽機車所使用之三元觸媒操作於過多氧氣條件下無法有效地將NOx還原成N2。NOx儲存與還原(NOx storage and reduction, NSR)已經被提出用於lean burn引擎中還原NOx。傳統NSR觸媒為Pt/BaO/Al2O3,此觸媒熱穩定性較薄弱,於低溫條件下(<400oC)無法有效將NOx還原成N2。最近,perovskite-type觸媒被考慮應用在NSR上,因為Perovskite-type觸媒具有較高的熱穩定性且活性能與貴金屬觸媒相比。因此,本研究是使用perovskite-type 觸媒去取代貴金屬觸媒並擔載於BaO/Al2O3探討NOx儲存能力。另外於Rich burn條件下結合非熱電漿(non-thermal plasma)探討低溫條件下NOx之還原能力。在Lean burn條件下之結果顯示SrKMn0.8Co0.2O4/BaO/Al2O3 (SKMCBA)觸媒於NO濃度200 ppm、反應溫度400oC、空間流速30,000 h-1、氧氣含量5%下具有最佳之NOx吸附能力(214 μmol/g),但隨著氧氣含量提高,觸媒對NOx吸附能力明顯下降;另外若僅添加CO2或H2O(g)添加至系統中會降低觸媒對NOx吸附能力,但同時添加CO2及H2O(g)至系統中,可以減少NOx吸附之負面影響。在Rich burn條件下結合電漿還原NOx結果顯示16 kV電壓下就足以將NOx脫附並還原成N2(78%);若氣氛通入加熱(150oC)之電漿系統中N2選擇性可以達83%;若加入1-2%之H2、CO、C3H6當作還原劑於加熱(150oC)之電漿系統中,N2之選擇性皆能達到85%以上。整體而言,非熱電漿結合本研究之perovskite-type觸媒能有效於低溫條件下脫附NOx並還原成N2。
摘要(英) Diesel engine has the advantage of high energy efficiency and it has been widely applied in industry and transportation. However, it can cause the severe emission of NOx if not properly treated. NOx is considered as an important air pollutant because it causes devastating effects on environment and human health. Hence, how to effectively reduce NOx emission has become an important issue. The concept of NOx storage and reduction (NSR) has been proposed to reduce NOx emission. The mechanisms of NSR over catalysts during lean/rich cycles can be generally divided into several steps: (1) oxidation of NO into NO2; (2) NOx (NO and NO2) sorption on the alkali and/or alkaline-earth sites in the form of nitrites or nitrates; (3) reducing agents (such as H2, CO, CxHy) evolution from the rich exhaust gas; (4) NOx release from the nitrite or nitrate sites; (5) NOx reduction to N2 . Traditionally, Pt/BaO/Al2O3 has been used for NSR. Recently, perovskite-type catalysts are considered for this application because their activities are comparable to noble metal catalysts for NSR. In this study, perovskite-type catalysts are used to replace noble metal catalysts, further perovskite is supported on BaO/Al2O3 to evaluate the NOx storage and reduction capability. The physicochemical properties of the catalysts (LSCBA, LSMCBA, SKMCBA, SKMCeB, SKCNBA) were characterized by XRD, SEM and BET, and the results indicate that 5 perovskites prepared possess good crystal phase, pore structures and specific surface area. SKMCBA shows good NOx storage capacity (NSC) (about 214 μmol/g ) compared to previous studies due to the high efficiency in adsorbing NO2. Various operating parameters which may affect NOx removal are also evaluated via a lab-scaled experimental setup for NSR, and the mechanisms are elucidated.
關鍵字(中) ★ 氮氧化物
★ NOx儲存與還原
★ 非熱電漿
★ 柴油引擎
★ 鈣鈦礦觸媒
關鍵字(英) ★ Nitrogen oxides (NOx)
★ NOx storage and reduction (NSR)
★ diesel engine
★ Perovskite-type caralysts
論文目次 中文摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 VIII
第一章 前言 1
1.1研究緣起 1
1.2研究目的 3
第二章 文獻回顧 4
2.1氮氧化物之特性、危害及污染源 4
2.1.1氮氧化物之來源 5
2.1.2氮氧化物對環境的影響 6
2.1.3氮氧化物對人體健康的影響 7
2.2氮氧化物生成機制 8
2.2.1熱生成NOx (Thermal NOx) 8
2.2.2瞬時生成NOx (Promp NOx) 8
2.2.3燃料型NOx (Fuel NOx) 9
2.3氮氧化物控制技術 10
2.3.1燃燒前處理 (Precombustion Treatment) 10
2.3.2燃燒程序改善 (Combustion Modification) 10
2.3.3燃燒後處理 (Post-Combustion Removal) 13
2.4氮氧化物儲存與還原法(NSR) 17
2.4.1 NSR反應機制 17
2.4.2 NSR反應中Pt/BaO/Al2O3觸媒成分所扮演之角色 19
2.5 Perovskite-type觸媒 26
2.5.1 Perovskite-type觸媒元素部分取代 27
2.5.2應用Perovskite-type觸媒於NSR反應 27
2.6 非熱電漿 29
2.6.1電漿生成原理 29
2.6.2非熱電漿之種類 29
2.6.3非熱電漿結合NSR技術 32
2.7氣相吸附 36
2.7.1氣相吸附原理 36
2.7.2影響吸附之因子 38
2.7.3貫穿曲線 40
第三章 研究方法與設備 42
3.1研究流程與架構 42
3.2預備實驗 43
3.2.1觸媒製備 43
3.2.2觸媒材料之物化分析 45
3.3實驗系統 49
3.4實驗分析方法 51
3.4.1反應器 51
3.4.2實驗藥品與氣體 52
3.4.3分析系統 53
3.5研究方法 55
3.6實驗結果之計算 59
第四章 結果與討論 61
4.1觸媒之物化特性 61
4.1.1 XRD晶相分析 61
4.1.2 FE-SEM 61
4.1.3 BET氮氣吸脫附測試 63
4.2吸附能力測試 64
4.2.1溫度變化對NOx吸附之影響 64
4.2.2氧氣含量對觸媒吸附NOx之影響 67
4.2.3空間流速變化對觸媒吸附NOx之影響 68
4.2.4水氣含量對觸媒吸附NOx之影響 69
4.2.5二氧化碳含量對觸媒吸附NOx之影響 71
4.2.6水氣與二氧化碳對觸媒吸附NOx之影響 72
4.3熱還原實驗 74
4.3.1 NOx程溫還原實驗(NOx-TPD) 74
4.4電漿還原實驗 75
4.4.1不同電壓對SKMCBA觸媒還原之影響 75
4.4.2添加不同比例之還原劑(H2、C3H6、CO)對SKMCBA觸媒還原NOx之影響 78
4.4.3同時添加H2、C3H6、CO、H2O(g)於加熱之NTP系統中探討SKMCBA觸媒對NOx還原之影響 82
4.4.4 SKMCBA觸媒Lean-Rich 循環操作測試 83
第五章 結論與建議 85
5.1結論 85
5.2建議 86
參考文獻 88
參考文獻
Abdulhamid, H., Fridell, E. and Skoglundh, M. (2004). ”Influence of the type of reducing agent (H2, CO, C3H6 and C3H8) on the reduction of stored NOx in a Pt/BaO/Al2O3 model catalyst.” Topics in Catalysis 30(1-4): 161-168.
Adamson, A. W. and Gast, A. P. (1967). ”Physical chemistry of surfaces.” Wiley-Interscience; 6th edition.
Bai, Z., Zhang, Z., Chen, B., Zhao, Q., Crocker, M. and Shi, C. (2017). ”Non-thermal plasma enhanced NSR performance over Pt/M/Ba/Al2O3 (M = Mn, Co, Cu) catalysts.” Chemical Engineering Journal 314: 688-699.
Bebar, L., Kermes, V., Stehlik, P., Canek, J. and Oral, J. (2002). ”Low NOx burners-prediction of emissions concentration based on design, measurements and modelling.” Waste Management 22(4): 443-451.
Bhatia, D., McCabe, R. W., Harold, M. P. and Balakotaiah, V. (2009). ”Experimental and kinetic study of NO oxidation on model Pt catalysts.” Journal of Catalysis 266(1): 106-119.
Burch, R., Breen, J. P. and Meunier, F. C. (2002). ”A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts.” Applied Catalysis B: Environmental 39(4): 283-303.
Burch, R., Millington, P. J. and Walker, A. P. (1994). ”Mechanism of the selective reduction of nitrogen monoxide on platinum-based catalysts in the presence of excess oxygen.” Applied Catalysis B: Environmental 4(1): 65-94.
Cant, N. W. and Patterson, M. J. (2002). ”The storage of nitrogen oxides on alumina-supported barium oxide.” Catalysis Today 73(3–4): 271-278.
Chang, J. S., Lawless, P. A. and Yamamoto, T. (1991a). ”Corona discharge processes.” IEEE Transactions on Plasma Science 19(6): 1152-1166.
Chang, M. B., Balbach, J. H., Rood, M. J. and Kushner, M. J. (1991b). ”Removal of SO2 from gas streams using a dielectric barrier discharge and combined plasma photolysis.” Journal of Applied Physics 69(8): 4409-4417.
Chen, X., Schwank, J., Li, J., Schneider, W. F., Goralski Jr, C. T. and Schmitz, P. J. (2005). ”Thermal decomposition of dispersed and bulk-like NOx species in model NOx trap materials.” Applied Catalysis B: Environmental 61(1–2): 164-175.
Chen, Z., Wang, X., Wang, Y. and Wang, R. (2015). ”Pt–Ru/Ba/Al2O3–Ce0.33Zr0.67O2: An effective catalyst for NOx storage and reduction.” Journal of Molecular Catalysis A: Chemical 396: 8-14.
Cheng, X., Zhang, X., Zhang, M., Sun, P., Wang, Z. and Ma, C. (2017). ”A simulated rotary reactor for NOx reduction by carbon monoxide over Fe/ZSM-5 catalysts.” Chemical Engineering Journal 307: 24-40.
Chiang, Y. C., Chiang, P. C. and Huang, C. P. (2001). ”Effects of pore structure and temperature on VOC adsorption on activated carbon.” Carbon 39(4): 523-534.
Dong, F., Suda, A., Tanabe, T., Nagai, Y., Sobukawa, H., Shinjoh, H., Sugiura, M., Descorme, C. and Duprez, D. (2004). ”Dynamic oxygen mobility and a new insight into the role of Zr atoms in three-way catalysts of Pt/CeO2–ZrO2.” Catalysis Today 93–95: 827-832.
Eliasson, B., Hirth, M. and Kogelschatz, U. (1987). ”Ozone synthesis from oxygen in dielectric barrier discharges.” Journal of Physics D: Applied Physics 20(11): 1421.
Epling, W. S., Campbell, L. E., Yezerets, A., Currier, N. W. and Parks, J. E. (2004a). ”Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts.” Catalysis Reviews 46(2): 163-245.
Epling, W. S., Parks, J. E., Campbell, G. C., Yezerets, A., Currier, N. W. and Campbell, L. E. (2004b). ”Further evidence of multiple NOx sorption sites on NOx storage/reduction catalysts.” Catalysis Today 96(1–2): 21-30.
Epling, W. S., Peden, C. H. and Szanyi, J. (2008). ”Carbonate formation and stability on a Pt/BaO/γ-Al2O3 NOx storage/reduction catalyst.” The Journal of Physical Chemistry C 112(29): 10952-10959.
Erkfeldt, S., Jobson, E. and Larsson, M. (2001). ”The effect of carbon monoxide and hydrocarbons on NOx storage at low temperature.” Topics in Catalysis 16(1): 127-131.
Forzatti, P., Castoldi, L., Nova, I., Lietti, L. and Tronconi, E. (2006). ”NOx removal catalysis under lean conditions.” Catalysis Today 117(1–3): 316-320.
Fridell, E., Skoglundh, M., Westerberg, B., Johansson, S. and Smedler, G. (1999). ”NOx storage in barium-containing catalysts.” Journal of Catalysis 183(2): 196-209.
Goldschmidt, V. M. (1926). ”Die gesetze der krystallochemie.” Naturwissenschaften 14(21): 477-485.
Gregg, S. J., Sing, K. S. W. and Salzberg, H. (1967). ”Adsorption surface area and porosity.” Journal of the Electrochemical Society 114(11): 279C-279C.
Hase, K. and Kori, Y. (1996). ”Effect of premixing of fuel gas and air on NOx formation.” Fuel 75(13): 1509-1514.
Hodjati, S., Bernhardt, P., Petit, C., Pitchon, V. and Kiennemann, A. (1998). ”Removal of NOx: Part I. Sorption/desorption processes on barium aluminate.” Applied Catalysis B: Environmental 19(3–4): 209-219.
Hodjati, S., Vaezzadeh, K., Petit, C., Pitchon, V. and Kiennemann, A. (2000). ”Absorption/desorption of NOx process on perovskites: performances to remove NOx from a lean exhaust gas.” Applied Catalysis B: Environmental 26(1): 5-16.
Kašpar, J., Fornasiero, P. and Hickey, N. (2003). ”Automotive catalytic converters: Current status and some perspectives.” Catalysis Today 77(4): 419-449.
Kim, C. H., Qi, G., Dahlberg, K. and Li, W. (2010). ”Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust.” Science 327(5973): 1624-1627.
Kogelschatz, U., Eliasson, B. and Hirth, M. (1988). ”Ozone generation from oxygen and air: discharge physics and reaction mechanisms.” Ozone: Science & Engineering 10 (4): 367-377.
Le Phuc, N., Courtois, X., Can, F., Royer, S., Marecot, P. and Duprez, D. (2011). ”NOx removal efficiency and ammonia selectivity during the NOx storage-reduction process over Pt/BaO (Fe, Mn, Ce)/Al2O3 model catalysts. Part II: Influence of Ce and Mn–Ce addition.” Applied Catalysis B: Environmental 102(3–4): 362-371.
Lê, P. N., Corbos, E. C., Courtois, X., Can, F., Royer, S., Marecot, P. and Duprez, D. (2009). ”Influence of Mn and Fe addition on the NOx storage–reduction properties and SO2 poisoning of a Pt/Ba/Al2O3 model catalyst.” Topics in Catalysis 52(13): 1771.
Li, J., Goh, W. H., Yang, X. and Yang, R. T. (2009). ”Non-thermal plasma-assisted catalytic NOx storage over Pt/Ba/Al2O3 at low temperatures.” Applied Catalysis B: Environmental 90(3–4): 360-367.
Li, Q., Meng, M., Dai, F., Zha, Y., Xie, Y., Hu, T. and Zhang, J. (2012a). ”Multifunctional hydrotalcite-derived K/MnMgAlO catalysts used for soot combustion, NOx storage and simultaneous soot–NOx removal.” Chemical Engineering Journal 184: 106-112.
Li, X. G., Dong, Y. H. and Xian, H. (2011). ”De-NOx in alternative lean/rich atmospheres on La1-xSrxCoO3 perovskites.” Energy & Environmental Sicence 4: 3351.
Li, Z., Meng, M., Zha, Y., Dai, F., Hu, T., Xie, Y. and Zhang, J. (2012b). ”Highly efficient multifunctional dually-substituted perovskite catalysts La1−xKxCo1−yCuyO3−δ used for soot combustion, NOx storage and simultaneous NOx-soot removal.” Applied Catalysis B: Environmental 121–122: 65-74.
Liu, G. and Gao, P.-X. (2011). ”A review of NOx storage/reduction catalysts: mechanism, materials and degradation studies.” Catalysis Science & Technology 1: 552-568.
López-Suárez, F. E., Illán-Gómez, M. J., Bueno-López, A. and Anderson, J. A. (2011). ”NOx storage and reduction on a SrTiCuO3 perovskite catalyst studied by operando DRIFTS.” Applied Catalysis B: Environmental 104(3–4): 261-267.
Mahzoul, H., Gilot, P., Brilhac, J.-F. and Stanmore, B. R. (2001). ”Reduction of NOx over a NOx-trap catalyst and the regeneration behaviour of adsorbed SO2.” Topics in Catalysis 16(1): 293-298.
Matsumoto, S. I. (2000). ”Catalytic reduction of nitrogen oxides in automotive exhaust containing excess oxygen by NOx storage-reduction catalyst.” CATTECH 4(2): 102-109.
Miller, J. A. and Bowman, C. T. (1989). ”Mechanism and modeling of nitrogen chemistry in combustion.” Progress in Energy and Combustion Science 15(4): 287-338.
Pan, K. L., Chen, D. L., Pan, G. T., Chong, S. and Chang, M. B. (2017). ”Removal of phenol from gas streams via combined plasma catalysis.” Journal of Industrial and Engineering Chemistry 52: 108-120.
Pauleta, S. R., Dell’Acqua, S. and Moura, I. (2013). ”Nitrous oxide reductase.” Coordination Chemistry Reviews 257(2): 332-349.
Peng, H. H., Pan, K. L., Yu, S. J., Yan, S. Y. and Chang, M. B. (2016). ”Combining nonthermal plasma with perovskite-like catalyst for NOx storage and reduction.” Environmental Science and Pollution Research 23(19): 19590-19601.
Phil, H. H., Reddy, M. P., Kumar, P. A., Ju, L. K. and Hyo, J. S. (2008). ”SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures.” Applied Catalysis B: Environmental 78(3–4): 301-308.
Prathap, C., Ray, A. and Ravi, M. R. (2008). ”Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition.” Combustion and Flame 155(1): 145-160.
Raizer, Y. P. and Allen, J. E. (1997). Gas discharge physics, Springer Berlin.
Rico-Pérez, V., Bueno-López, A., Kim, D. J., Ji, Y. and Crocker, M. (2015). ”Pt/CexPr1−xO2 (x = 1 or 0.9) NOx storage–reduction (NSR) catalysts.” Applied Catalysis B: Environmental 163: 313-322.
Riess, J. (1998). ”NOx : how nitrogen oxides affect the way we live and breathe.” US Environmental Protection Agency, Office of Air Quality Planning and Standards.
Roy, S. and Baiker, A. (2009). ”NOx storage reduction catalysis: From mechanism and materials properties to storage reduction performance.” Chemical Reviews 109(9): 4054-4091.
Sardja, I. and Dhali, S. (1990). ”Plasma oxidation of SO2.” Applied Physics Letters 56(1): 21-23.
Shi, C., Zhang, Z. s., Crocker, M., Xu, L., Wang, C. y., Au, C. and Zhu, A. m. (2013). ”Non-thermal plasma-assisted NOx storage and reduction on a LaMn0.9Fe0.1O3 perovskite catalyst.” Catalysis Today 211: 96-103.
Skalska, K., Miller, J. S. and Ledakowicz, S. (2010). ”Trends in NOx abatement: A review.” Science of The Total Environment 408(19): 3976-3989.
Smeltz, A. D., Getman, R. B., Schneider, W. F. and Ribeiro, F. H. (2008). ”Coupled theoretical and experimental analysis of surface coverage effects in Pt-catalyzed NO and O2 reaction to NO2 on Pt(1 1 1).” Catalysis Today 136(1–2): 84-92.
Szailer, T., Kwak, J. H., Kim, D. H., Hanson, J. C., Peden, C. H. F. and Szanyi, J. (2006). ”Reduction of stored NOx on Pt/Al2O3 and Pt/BaO/Al2O3 catalysts with H2 and CO.” Journal of Catalysis 239(1): 51-64.
Takahashi, N., Shinjoh, H., Iijima, T., Suzuki, T., Yamazaki, K., Yokota, K., Suzuki, H., Miyoshi, N., Matsumoto, S. I., Tanizawa, T., Tanaka, T., Tateishi, S. S. and Kasahara, K. (1996). ”The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst.” Catalysis Today 27(1): 63-69.
Toshiaki, Y. (2003). ”Performance evaluation of nonthermal plasma reactors for NO oxidation in diesel engine exhaust gas treatment.” IEEE Transactions on Industry Applications 39.
Treybal, R. E. (1980). ”Mass transfer operations.” New York.
Van, D. R. (1999). ”Best available techniques to reduce emissions from refineries - air.” Concawe: 17-26.
Vijay, R., Hendershot, R. J., Rivera-Jiménez, S. M., Rogers, W. B., Feist, B. J., Snively, C. M. and Lauterbach, J. (2005). ”Noble metal free NOx storage catalysts using cobalt discovered via high-throughput experimentation.” Catalysis Communications 6(2): 167-171.
Waibel, R. T., Nickeson, D., Radak, L. and Boyd, W. (1986). ”Fuel staging burners for NOx control ” ASM Symposium on Industrial Combustion Technologies.
Wang, X., Chen, Z., Luo, Y., Jiang, L. and Wang, R. (2013). ”Cu/Ba/bauxite: an inexpensive and efficient alternative for Pt/Ba/Al2O3 in NOx removal.” Scientific reports 3: 1559.
Wang, X., Yu, Y. and He, H. (2010). ”Effect of Co addition to Pt/Ba/Al2O3 system for NOx storage and reduction.” Applied Catalysis B: Environmental 100(1–2): 19-30.
Westerberg, B. and Fridell, E. (2001). ”A transient FTIR study of species formed during NOx storage in the Pt/BaO/Al2O3 system.” Journal of Molecular Catalysis A: Chemical 165(1–2): 249-263.
Xiao, J., Li, X., Deng, S., Wang, F. and Wang, L. (2008). ”NOx storage-reduction over combined catalyst Mn/Ba/Al2O3–Pt/Ba/Al2O3.” Catalysis Communications 9(5): 563-567.
Xu, J., Harold, M. P. and Balakotaiah, V. (2009). ”Microkinetic modeling of steady-state NO/H2/O2 on Pt/BaO/Al2O3 NOx storage and reduction monolith catalysts.” Applied Catalysis B: Environmental 89(1–2): 73-86.
Yamazaki, K., Suzuki, T., Takahashi, N., Yokota, K. and Sugiura, M. (2001). ”Effect of the addition of transition metals to Pt/Ba/Al2O3 catalyst on the NOx storage-reduction catalysis under oxidizing conditions in the presence of SO2.” Applied Catalysis B: Environmental 30(3–4): 459-468.
You, R., Zhang, Y., Liu, D., Meng, M., Jiang, Z., Zhang, S. and Huang, Y. (2015). ”A series of ceria supported lean-burn NOx trap catalysts LaCoO3/K2CO3/CeO2 using perovskite as active component.” Chemical Engineering Journal 260: 357-367.
Yu, Q., Wang, H., Liu, T., Xiao, L., Jiang, X. and Zheng, X. (2012). ”High-efficiency removal of NOx using a combined adsorption-discharge plasma catalytic process.” Environmental Science & Technology 46(4): 2337-2344.
Yuan.J.J (1999). ”Prediction of NOx emissions in recovery boilers - an introduction to NOx module.” Process Simulations Ltd.
Zeldovich, Y. B (1946). ”The oxidation of nitrogen in combustion and explosions.” Acta physicochimica U.R.S.S. 21: 577-628.
Zhang, Z., Chen, B. b., Wang, X. k., Xu, L., Au, C., Shi, C. and Crocker, M. (2015a). ”NOx storage and reduction properties of model manganese-based lean NOx trap catalysts.” Applied Catalysis B: Environmental 165: 232-244.
Zhang, Z., Crocker, M., Chen, B., Bai, Z., Wang, X. and Shi, C. (2015b). ”Pt-free, non-thermal plasma-assisted NOx storage and reduction over M/Ba/Al2O3 (M = Mn, Fe, Co, Ni, Cu) catalysts.” Catalysis Today 256, Part 1: 115-123.
Zhang, Z., Crocker, M., Chen, B., Wang, X., Bai, Z. and Shi, C. (2015c). ”Non-thermal plasma-assisted NOx storage and reduction over cobalt-containing LNT catalysts.” Catalysis Today 258, Part 2: 386-395.

Zhu, J. and Thomas, A. (2009). ”Perovskite-type mixed oxides as catalytic material for NO removal.” Applied Catalysis B: Environmental 92(3–4): 225-233.
李公哲 (2002). ”環境工程.” 茂昌圖書有限公司,: 370-383.
李灝銘 (2001). ”以低溫電漿去除揮發性有機物之研究.” 博士論文 國立中央大學環境工程研究所.
蔣本基 (1996). ”活性碳物理化學特性對VOCs吸附之影響.” 工業污染防治 58.
詹德隆 (1998). ”鍋爐燃料與燃燒.” 67-87.
指導教授 張木彬(Moo Been Chang) 審核日期 2017-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明