博碩士論文 104326002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.138.200.66
姓名 林璟琪(Jing-Chi Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 微粒構形對靜電集塵式氣液介面暴露系統 效能之影響
(Effect of Particle Morphology on Performance of ESP-ALI)
相關論文
★ 熱昇華廢棄相紙資源化研究★ 地勤公司從業人員搬運作業肌肉骨骼傷害風險評估
★ 高階製程安全管理架構★ In Situ Measurements of CCN Activity and Aerosol Optical Properties at Biomass Burning Source and Receptor Regions
★ 以COMSOL Multiphysics模擬氣懸微粒於靜電集塵式細胞株暴露系統中之運動軌跡★ 社區改造碳排放及減量計算分析與探討
★ 中小型燃煤鍋爐粒狀污染物、硫氧化物及氮氧化物經串聯控制設備後之去除效率探討研究-以桃園市為例★ 整合填充型水洗技術於潔淨室外氣空調箱 以去除酸鹼氣態分子污染物之研究
★ 固定污染源揮發性有機物(VOCs)自廠係數建置-以某矽晶圓製造廠為例★ 高層建築大樓室內空氣品質之探討-以某企業大樓為例
★ 公路交通運輸對於山谷地形郊區空氣品質之影響★ 以沸石轉輪焚化系統處理變壓器塗裝作業VOCs效率探討
★ 以數值模擬分析狹縫型虛擬衝擊器之效能★ 研究微粒帶電性質與呼吸毒性之關聯: 以小鼠暴露奈米黑碳微粒實驗為例
★ 靜電集塵式ALI暴露系統之設計、開發與評估★ 以石英晶體微天平量測細懸浮微粒PM2.5質量濃度之可行性探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,靜電集塵式氣液界面(ESP-ALI)暴露系統已逐漸發展為評估環境中及工業製程等來源之奈米微粒毒性的重要工具之一。一般而言,過去研究主要以球形微粒進行ESP-ALI暴露系統性能之研究。然而大氣中大部分微粒並非完美的球形,且文獻亦指出微粒構形可能影響其收集效率及細胞暴露毒性,例如板狀石墨烯奈米材料常以近乎垂直角度貫穿所暴露之細胞,可能對細胞骨架組織造成物理性傷害。本研究為探討微粒構形對ESP-ALI暴露系統性能之影響,分別以電移動度分析儀(Differential Mobility Analyzer, DMA)篩選出單粒徑之球形蔗糖微粒、非球形奈米黑碳微粒及奈米銀微粒進行ESP-ALI貫穿率實驗,並計算微粒於不同實驗操作條件下之貫穿率或收集效率。同時利用DMA-APM串聯系統即時量測微粒質量,並以碎形維度(Fractal dimension, Df)參數量化奈米氣膠微粒構形。結果顯示微粒通過ESP-ALI暴露系統的貫穿率隨著粒徑下降而下降,並隨施加電壓上升而下降。利用無因次速度比(Vc/Vavg,r)作為轉換參數,細懸浮微粒(dp= 100-250 nm)在不同操作條件下的貫穿率可轉換為高相關性的特徵指數遞減曲線。因此,只要已知微粒的轉換參數值,就可透過此特徵曲線獲得不同帶電量之微粒通過ESP-ALI暴露系統的貫穿率。不同構形之超細懸浮微粒(dp< 100 nm)在ESP-ALI暴露系統中性能相似,但此粒徑範圍下擴散所造成的損失不可忽略。而在細懸浮微的粒徑範圍下,奈米黑碳聚集體(Df= 2.29)的的收集效率高於球形蔗糖微粒。這可能是由於電場和流場分別引起的微粒對準效應於ESP-ALI暴露系統中同時影響不規則奈米黑碳聚集體之運動傳輸行為。此外,本研究進一步提出利用Deutsch理論模式及實驗數據進行擬合所得到的二次曲線,預測不同微粒構形及操作條件下ESP-AL暴露系統的性能。
摘要(英) The electrostatic precipitator air-liquid interface (ESP-ALI) exposure systems were recently developed for assessing the toxicity of atmospheric aerosols and air-borne engineered nanomaterials. Generally, the collection efficiency of ESP-ALI was studied for spherical aerosols. However, atmospheric aerosols are not always perfectly spherical and the particle morphology might affect the ESP-ALI collection efficiency as well as the cell toxicity. For instance, the plate-like graphene nanomaterials penetrate into the cell preferred nearly orthogonal and may physically disrupt the cytoskeletal organization of cells. In this study, to explore the effect of particle morphology on the performance of ESP-ALI, three types of monodisperse aerosols, including spherical sucrose particles, non-spherical soot aggregates and silver aggregates/agglomerates, were selected to evaluate the collection efficiency of ESP-ALI at a flow rate ranging from 0.3 to 1.5 LPM. To quantify particle morphology, the fractal dimension (Df) of testing nano-aerosols were characterized using a tandem system of Differential Mobility Analyzer (DMA, TSI 3081) and Aerosol Particle Mass Analyzer (APM, Kanomax 3601). Results show that at identical conditions, the particle penetrations in ESP-ALI decrease with decreasing particle size and increasing applied voltage. The penetration for fine particles (dp= 100-250 nm) under different operating conditions can be well correlated by a characteristic exponential curve using a dimensionless drift velocity (Vc/Vavg,r) as the scaling parameter. It suggests that the performance of the ESP-ALI can be predicted as long as the value of Vc/Vavg,r was known. For UFPs (dp< 100 nm) with different particle morphologies, the particle penetrations in ESP-ALI are similar, but their diffusion losses are not negligible. In contrast, for fine particles, the collection efficiency of soot nano-aggregates (Df= 2.29) is higher than that of spherical sucrose particles. This might be due to the simultaneous influences of the electric-field-induced alignment and the flow-field-induced alignment. Furthermore, based on the Zhibin and Guoquan (1994)’s Deutsch model [1], a quadratic equation was applied to fit the experimental data and be used to predict the performance of the ESP-ALI.
關鍵字(中) ★ 奈米微粒構形
★ 奈米毒性
★ ESP-ALI暴露系統
★ 碎形維度
★ 氣懸微粒質量分析儀
關鍵字(英) ★ Nano-particle morphology
★ Nanotoxicity
★ ESP-ALI exposure system
★ Fractal Dimension
★ Aerosol Particle Mass Analyzer
論文目次 摘要 i
Abstract ii
Acknowledgments iv
Contents v
List of Figures vii
List of Tables viii
Nomenclature ix
Chapter 1. Introduction 1
Chapter 2. Methodology 4
2.1 Experimental setup 4
2.1.1 Aerosol generation 4
2.1.2 DMA size classification 7
2.1.3 Electrostatic precipitation air-liquid interface (ESP-ALI) 7
2.1.4 Particle characterization 9
2.2 Data analysis 11
2.2.1 ESP-ALI collection efficiency 11
2.2.2 Effective density (ρeff) and fractal dimension (Df) 12
2.2.3 TEM image 12
Chapter 3. Results and discussion 13
3.1 Particle morphology 13
3.2 Effect of particle size and applied voltage 15
3.3 Effect of flow rate 18
3.4 Diffusion for UFPs 22
3.5 Effect of particle morphology for UFPs 26
3.6 Effect of particle morphology for fine particles 28
3.7 Predictive model 31
Chapter 4. Conclusion 34
References 36
Appendix. Supplemental material for APM experimental data 42
Review Committee Comments 47
參考文獻
1. Zhibin, Z. and Z. Guoquan, Investigations of the collection efficiency of an electrostatic precipitator with turbulent effects. Aerosol Science and Technology, 1994. 20(2): p. 169-176.
2. Anderson, J.O., J.G. Thundiyil, and A. Stolbach, Clearing the air: a review of the effects of particulate matter air pollution on human health. Journal of Medical Toxicology, 2012. 8(2): p. 166-75.
3. Dockery, D.W., Health effects of particulate air pollution. Annals of Epidemiology, 2009. 19(4): p. 257-63.
4. Mülhopt, S., M. Dilger, S. Diabaté, C. Schlager, T. Krebs, R. Zimmermann, J. Buters, S. Oeder, T. Wäscher, and C. Weiss, Toxicity testing of combustion aerosols at the air–liquid interface with a self-contained and easy-to-use exposure system. Journal of Aerosol Science, 2016. 96: p. 38-55.
5. Stone, V., S. Hankin, R. Aitken, K. Aschberger, A. Baun, F. Christensen, T. Fernandes, S.F. Hansen, N.I.B. Hartmann, and G. Hutchinson, Engineered nanoparticles: Review of health and environmental safety (ENRHES). Project final report. 2010, European Commission.
6. Brook, R.D., S. Rajagopalan, C.A. Pope, J.R. Brook, A. Bhatnagar, A.V. Diez-Roux, F. Holguin, Y. Hong, R.V. Luepker, and M.A. Mittleman, Particulate matter air pollution and cardiovascular disease. Circulation, 2010. 121(21): p. 2331-2378.
7. Pope 3rd, C., D.V. Bates, and M.E. Raizenne, Health effects of particulate air pollution: time for reassessment? Environmental Health Perspectives, 1995. 103(5): p. 472.
8. Barnes, P.J., Small airways in COPD. New England Journal of Medicine, 2004. 350: p. 2635-2636.
9. Bowler, R.P., P.J. Barnes, and J.D. Crapo, The role of oxidative stress in chronic obstructive pulmonary disease. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2004. 1(2): p. 255-277.
10. Hart, J.E., F. Laden, E.A. Eisen, T.J. Smith, and E. Garshick, Chronic obstructive pulmonary disease mortality in railroad workers. Occupational and Environmental Medicine, 2009. 66(4): p. 221-226.
11. Hylkema, M., P. Sterk, W. De Boer, and D. Postma, Tobacco use in relation to COPD and asthma. European Respiratory Journal, 2007. 29(3): p. 438-445.
12. EPA, D., Integrated science assessment for particulate matter. US Environmental Protection Agency Washington, DC, 2009.
13. Cancer, I.A.f.R.o., IARC: Diesel engine exhaust carcinogenic. Press Release, 2012(213).
14. Cancer, I.A.f.R.o., IARC: Outdoor air pollution a leading environmental cause of cancer deaths. 2013: International Agency for Research on Cancer.
15. BeruBe, K., M. Aufderheide, D. Breheny, R. Clothier, R. Combes, R. Duffin, B. Forbes, M. Gaca, A. Gray, I. Hall, M. Kelly, M. Lethem, M. Liebsch, L. Merolla, J.P. Morin, J. Seagrave, M.A. Swartz, T.D. Tetley, and M. Umachandran, In vitro models of inhalation toxicity and disease. The report of a FRAME workshop. Altern Lab Anim, 2009. 37(1): p. 89-141.
16. Hartung, T., Thoughts on limitations of animal models. Parkinsonism & Related Disorders, 2008. 14: p. S81-S83.
17. Maier, K.L., F. Alessandrini, I. Beck-Speier, T.P. Josef Hofer, S. Diabaté, E. Bitterle, T. Stöger, T. Jakob, H. Behrendt, and M. Horsch, Health effects of ambient particulate matter—biological mechanisms and inflammatory responses to in vitro and in vivo particle exposures. Inhalation Toxicology, 2008. 20(3): p. 319-337.
18. Carlson, C., S.M. Hussain, A.M. Schrand, L. K. Braydich-Stolle, K.L. Hess, R.L. Jones, and J.J. Schlager, Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. The Journal of Physical Chemistry B, 2008. 112(43): p. 13608-13619.
19. Chairuangkitti, P., S. Lawanprasert, S. Roytrakul, S. Aueviriyavit, D. Phummiratch, K. Kulthong, P. Chanvorachote, and R. Maniratanachote, Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicology In Vitro, 2013. 27(1): p. 330-338.
20. Hussain, S.M., A.K. Javorina, A.M. Schrand, H.M. Duhart, S.F. Ali, and J.J. Schlager, The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicological Sciences, 2006. 92(2): p. 456-463.
21. Grabinski, C., S. Hussain, K. Lafdi, L. Braydich-Stolle, and J. Schlager, Effect of particle dimension on biocompatibility of carbon nanomaterials. Carbon, 2007. 45(14): p. 2828-2835.
22. Blank, F., B.M. Rothen-Rutishauser, S. Schurch, and P. Gehr, An optimized in vitro model of the respiratory tract wall to study particle cell interactions. Journal of Aerosol Medicine, 2006. 19(3): p. 392-405.
23. Teeguarden, J.G., P.M. Hinderliter, G. Orr, B.D. Thrall, and J.G. Pounds, Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicological Sciences, 2007. 95(2): p. 300-312.
24. Drescher, D., G. Orts-Gil, G. Laube, K. Natte, R.W. Veh, W. Österle, and J. Kneipp, Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Analytical and Bioanalytical Chemistry, 2011. 400(5): p. 1367.
25. Kittler, S., C. Greulich, J. Gebauer, J. Diendorf, L. Treuel, L. Ruiz, J. Gonzalez-Calbet, M. Vallet-Regi, R. Zellner, and M. Köller, The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. Journal of Materials Chemistry, 2010. 20(3): p. 512-518.
26. Panas, A., C. Marquardt, O. Nalcaci, H. Bockhorn, W. Baumann, H.-R. Paur, S. Mülhopt, S. Diabaté, and C. Weiss, Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Nanotoxicology, 2012. 7(3): p. 259-273.
27. Treuel, L., M. Malissek, J.S. Gebauer, and R. Zellner, The influence of surface composition of nanoparticles on their interactions with serum albumin. ChemPhysChem, 2010. 11(14): p. 3093-3099.
28. Aufderheide, M. and U. Mohr, CULTEX—an alternative technique for cultivation and exposure of cells of the respiratory tract to airborne pollutants at the air/liquid interface. Experimental and Toxicologic Pathology, 2000. 52(3): p. 265-270.
29. Paur, H.-R., S. Mülhopt, C. Weiss, and S. Diabaté, In vitro exposure systems and bioassays for the assessment of toxicity of nanoparticles to the human lung. Journal für Verbraucherschutz und Lebensmittelsicherheit, 2008. 3(3): p. 319-329.
30. Müller, L., P. Comte, J. Czerwinski, M. Kasper, A.C. Mayer, P. Gehr, H. Burtscher, J.-P. Morin, A. Konstandopoulos, and B. Rothen-Rutishauser, New exposure system to evaluate the toxicity of (scooter) exhaust emissions in lung cells in vitro. Environmental Science and Technology, 2010. 44(7): p. 2632-2638.
31. Lenz, A.G., E. Karg, B. Lentner, V. Dittrich, C. Brandenberger, B. Rothen-Rutishauser, H. Schulz, G.A. Ferron, and O. Schmid, A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles. Particle and Fibre Toxicology, 2009. 6: p. 32.
32. Comouth, A., H. Saathoff, K.-H. Naumann, S. Muelhopt, H.-R. Paur, and T. Leisner, Modelling and measurement of particle deposition for cell exposure at the air–liquid interface. Journal of Aerosol Science, 2013. 63: p. 103-114.
33. Desantes, J., X. Margot, A. Gil, and E. Fuentes, Computational study on the deposition of ultrafine particles from Diesel exhaust aerosol. Journal of Aerosol Science, 2006. 37(12): p. 1750-1769.
34. Tippe, A., U. Heinzmann, and C. Roth, Deposition of fine and ultrafine aerosol particles during exposure at the air/cell interface. Journal of Aerosol Science, 2002. 33(2): p. 207-218.
35. Rach, J., J. Budde, N. Mohle, and M. Aufderheide, Direct exposure at the air-liquid interface: evaluation of an in vitro approach for simulating inhalation of airborne substances. Journal of Applied Toxicology, 2014. 34(5): p. 506-15.
36. Aufderheide, M., S. Scheffler, N. Möhle, B. Halter, and D. Hochrainer, Analytical in vitro approach for studying cyto-and genotoxic effects of particulate airborne material. Analytical and Bioanalytical Chemistry, 2011. 401(10): p. 3213-3220.
37. Saffari, H., A. Malugin, H. Ghandehari, and L.F. Pease, Electrostatic deposition of nanoparticles into live cell culture using an electrospray differential mobility analyzer (ES-DMA). Journal of Aerosol Science, 2012. 48: p. 56-62.
38. Volckens, J., L. Dailey, G. Walters, and R.B. Devlin, Direct particle-to-cell deposition of coarse ambient particulate matter increases the production of inflammatory mediators from cultured human airway epithelial cells. Environmental Science and Technology, 2009. 43(12): p. 4595-4599.
39. Luo, C.-H., W.-M.G. Lee, Y.-C. Lai, C.-Y. Wen, and J.-J. Liaw, Measuring the fractal dimension of diesel soot agglomerates by fractional Brownian motion processor. Atmospheric Environment, 2005. 39(19): p. 3565-3572.
40. Ku, B.K. and A.D. Maynard, Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. Journal of Aerosol Science, 2006. 37(4): p. 452-470.
41. Venkataraman, S., J.L. Hedrick, Z.Y. Ong, C. Yang, P.L.R. Ee, P.T. Hammond, and Y.Y. Yang, The effects of polymeric nanostructure shape on drug delivery. Advanced Drug Delivery Reviews, 2011. 63(14): p. 1228-1246.
42. Yang, H., C. Liu, D. Yang, H. Zhang, and Z. Xi, Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. Journal of Applied Toxicology, 2009. 29(1): p. 69-78.
43. Chen, S.-C., J. Wang, H. Fissan, and D.Y. Pui, Exposure assessment of nanosized engineered agglomerates and aggregates using Nuclepore filter. Journal of Nanoparticle Research, 2013. 15(10): p. 1955.
44. Cheng, M., G. Xie, M. Yang, and D. Shaw, Experimental characterization of chain-aggregate aerosol by electrooptic scattering. Aerosol Science and Technology, 1991. 14(1): p. 74-81.
45. Colbeck, I., B. Atkinson, and Y. Johar, The morphology and optical properties of soot produced by different fuels. Journal of Aerosol Science, 1997. 28(5): p. 715-723.
46. Gratton, S.E., P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, and J.M. DeSimone, The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences, 2008. 105(33): p. 11613-11618.
47. George, S., S. Lin, Z. Ji, C.R. Thomas, L. Li, M. Mecklenburg, H. Meng, X. Wang, H. Zhang, and T. Xia, Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. American Chemical Society Nano, 2012. 6(5): p. 3745-3759.
48. Pal, S., Y.K. Tak, and J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 2007. 73(6): p. 1712-1720.
49. Li, Y., H. Yuan, A. von dem Bussche, M. Creighton, R.H. Hurt, A.B. Kane, and H. Gao, Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proceedings of the National Academy of Sciences, 2013. 110(30): p. 12295-12300.
50. Li, C., S. Liu, and Y. Zhu, Determining ultrafine particle collection efficiency in a nanometer aerosol sampler. Aerosol Science and Technology, 2010. 44(11): p. 1027-1041.
51. Schmidt-Ott, A., New approaches to in situ characterization of ultrafine agglomerates. Journal of Aerosol Science, 1988. 19(5): p. 553559-557563.
52. McMurry, P.H., X. Wang, K. Park, and K. Ehara, The relationship between mass and mobility for atmospheric particles: A new technique for measuring particle density. Aerosol Science and Technology, 2002. 36(2): p. 227-238.
53. Ehara, K., C. Hagwood, and K.J. Coakley, Novel method to classify aerosol particles according to their mass-to-charge ratio—aerosol particle mass analyser. Journal of Aerosol Science, 1996. 27(2): p. 217-234.
54. Rissler, J., M.E. Messing, A.I. Malik, P.T. Nilsson, E.Z. Nordin, M. Bohgard, M. Sanati, and J.H. Pagels, Effective density characterization of soot agglomerates from various sources and comparison to aggregation theory. Aerosol Science and Technology, 2013. 47(7): p. 792-805.
55. Deutsch, W., Bewegung und ladung der elektrizitätsträger im zylinderkondensator. Annalen der Physik, 1922. 373(12): p. 335-344.
56. Park, K., F. Cao, D.B. Kittelson, and P.H. McMurry, Relationship between particle mass and mobility for diesel exhaust particles. Environmental Science and Technology, 2003. 37(3): p. 577-583.
57. Rissler, J., E. Swietlicki, A. Bengtsson, C. Boman, J. Pagels, T. Sandström, A. Blomberg, and J. Löndahl, Experimental determination of deposition of diesel exhaust particles in the human respiratory tract. Journal of Aerosol Science, 2012. 48: p. 18-33.
58. Dixkens, J. and H. Fissan, Development of an electrostatic precipitator for off-line particle analysis. Aerosol Science & Technology, 1999. 30(5): p. 438-453.
59. Fujitani, Y., Y. Sugaya, M. Hashiguchi, A. Furuyama, S. Hirano, and A. Takami, Particle deposition efficiency at air–liquid interface of a cell exposure chamber. Journal of Aerosol Science, 2015. 81: p. 90-99.
60. 方緯宸, 以 COMSOL Multiphysics 模擬氣懸微粒於靜電集塵式細胞株暴露系統中之運動軌跡. 中央大學環境工程研究所學位論文, 2013: p. 1-99.
61. Hinds, W.C., Aerosol technology: properties, behavior, and measurement of airborne particles. 1999. Wiley: New York.
62. Zelenyuk, A. and D. Imre, On the effect of particle alignment in the DMA. Aerosol Science and Technology, 2007. 41(2): p. 112-124.
63. Li, M., G.W. Mulholland, and M.R. Zachariah, The effect of alignment on the electric mobility of soot. Aerosol Science and Technology, 2016. 50(10): p. 1003-1016.
64. Kasper, G. and D.T. Shaw, Comparative size distribution measurements on chain aggregates. Aerosol Science and Technology, 1982. 2(3): p. 369-381.
65. Cooperman, P., A new theory of precipitator efficiency. Atmospheric Environment (1967), 1971. 5(7): p. 541-551.
66. Leonard, G., M. Mitchner, and S. Self, Experimental study of the effect of turbulent diffusion on precipitator efficiency. Journal of Aerosol Science, 1982. 13(4): p. 271-284.
67. Park, S.J. and S.S. Kim, Effects of particle space charge and turbulent diffusion on performance of plate–plate electrostatic precipitators. Journal of Electrostatics, 1998. 45(2): p. 121-137.
指導教授 蕭大智(Ta-Chih Hsiao) 審核日期 2017-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明